Real-Time Compute
Virtualization

Luca Abeni
luca.abeni@santannapisa.it

March 30, 2020

Real-Time in VMs???

e Running real-time applications on an RTOS is not a
problem...
e ...But, can real-time applications run in virtual

machines?
Real-Time in Virtual Machines??? But... Why?
e Component-Based Development

Complex applications: sets of smaller
components
Both functional and temporal interfaces

Security (isolate real-time applications in a VM)
Easy deployment; Time-sensitive clouds

Virtualization Technologies Real-Time VMs

Real-Time in VMs

e Real-Time applications running in a VM?
» As for OSs, two different aspects

Virtualization Technologies Real-Time VMs

Real-Time in VMs

e Real-Time applications running in a VM?
As for OSs, two different aspects

e Resource allocation/management
(scheduling)

CPU allocation/scheduling: lot of work in
literature

Virtualization Technologies Real-Time VMs

Real-Time in VMs

e Real-Time applications running in a VM?
» As for OSs, two different aspects

e Latency (host and guest)

e Latencies not investigated too much (yet!)

Virtualization Technologies Real-Time VMs

Real-Time in VMs

e Real-Time applications running in a VM?
As for OSs, two different aspects

e Resource allocation/management
(scheduling)
e Latency (host and guest)

CPU allocation/scheduling: lot of work in
literature

Latencies not investigated too much (yet!)
e Virtualization: full hw or OS-level

Containers: real-time performance of the host
kernel

Hw virtualization: hypervisors (example: KVM or
Xen) can introduce latencies!

Virtualization Technologies Real-Time VMs

e Latency: measure of the difference between the
theoretical and actual schedule

Task 7 expects to be scheduled attime ¢ . ..
... but is actually scheduled at time ¢’
= Latency L =t — ¢
e The latency L can be accounted for in schedulability
analysis

Similar to what is done for shared resources,
efc...

Strange “shared resource”: the OS kernel (or the
hypervisor)

Virtualization Technologies Real-Time VMs

Example: Periodic Task

e (Consider a periodic task

Y 4
while (1) {
/* Job body */
clock_nanosleep (CLOCK_REALTIME,
TIMER ABSTIME, &r, NULL);

timespec_add_us (&r, period);

}

e The task expects to be executed at time r
(: ro +]T)
e ...Butis sometimes delayed to ro + 37" + o

Virtualization Technologies Real-Time VMs

Theoretical Schedule

e o
(oo b oml

0 2 4 6 8 10 12 14 16 18 20 22

Virtualization Technologies Real-Time VMs

Actual Schedule

e e
[om | w w oaoml

0 2 4 6 8 10 12 14 16 18 20 22

o What happens if the 2" job of 7, arrives a little bit
later???

» The 2" job of » misses a deadline!!!

Virtualization Technologies Real-Time VMs

Effects of the Latency

e Upper bound for L? If not known, no schedulability
analysis!!!

The latency must be bounded. AL™** . L < L™*

e If L™ s too high, only few task sets result to be
schedulable

The worst-case latency L™** cannot be too high

Virtualization Technologies Real-Time VMs

Sources of Latency — 1

o Task: stream of jobs (activations) arriving at time r;
Task scheduled at time ¢’ > r; — Delay t' — r;

caused by:
1. Job arrival (task activation) signaled at time
’I“j —+ Ll

2. Eventserved attime r; + L' + L?
3. Task actually scheduled at r; ; + L' + L* + I

Virtualization Technologies Real-Time VMs

Sources of Latency — 2

M= e P == 0
e [:Interference from higher priority tasks
Not really a latency!!!
e L?: non-preemptable section latency L™

Due to non-preemptable sections in the kernel (or
hypervisor!) or to deferred interrupt processing

o L!: delayed interrupt generation

Generally small
Hardware (or virtualized) timer interrupt: timer
resolution latency Lt

Virtualization Technologies Real-Time VMs

Latency in Linux

e Tool (cyclictest) to measure the latency

Periodic task scheduled at the highest priority
Response time equal to execution time (almost 0)

e Vanilla kernel: depends on the configuration
Can be tens of milliseconds

e Preempt-RT patchset
(https://wiki.linuxfoundation.org/realtime):
reduce latency to less than 100 microseconds

Tens of microseconds on well-tuned systems!
e SO, real-time on Linux is not an issue
Is this valid for hypervisors/VMs too?

Virtualization Technologies Real-Time VMs

https://wiki.linuxfoundation.org/realtime

What About VM Latencies?

e Hypervisor: software component responsible for
executing multiple OSs on the same physical node

Can introduce latencies too!
e Different kinds of hypervisors:

Xen: bare-metal hypervisor (below the Linux
kernel)

e (Common idea: the hypervisor is small/simple,
so It causes small latencies

KVM: hosted hypervisor (Linux kernel module)

e Latencies reduced by using Preempt-RT
Linux developers already did lot of work!!!

Virtualization Technologies Real-Time VMs

Hypervisor Latency

e Same strategy/tools used for measuring kernel
latency
e Ildea:runcyclictest ina VM

cyclictest process ran in the guest OS...
...instead of host OS

cyclictest period: 50us

“Kernel stress” to trigger high latencies
Non-real-time processes performing lot of
syscalls or triggering lots of interrupts

Executed in the host OS (for KVM) or in Dom0
(for Xen)

e Experiments on multiple x86-based systems

Virtualization Technologies Real-Time VMs

Hypervisor Latencies

0.8 _
= A 0.7 I]
0.6 B
105 —
104 i
0.6 H v 10.3 H .
kvm, RT host, RT guest [|
0.5 H “o.2 kvm, RT host, NRT guest i
’ kvm, NRT host, RT guest A\
kvm, NRT host, NRT guest </
04 H i Xen, RT Dom0, RT DomU M
I 0.1 1 Xen, RT Dom0, NRT DomU T
Xen, NRT DomO, RT DomU A
Xen, NRT DomO, NRT DomU v
0.3 H 10 @ ! ! ! |
0 100 200 300 400 500

kvm, RT host, RT guest
02 H 1‘ kvm, RT host, NRT guest

kvm, NRT host, RT guest
kvm, NRT host, NRT guest
Xen, RT Dom0, RT DomU
0.1 Xen, RT Dom0, NRT DomU
Xen, NRT DomO, RT DomU

0 thys " ‘ ‘ _ Xen, NRT Dom0, NRT DomU Intel Core i7

0 200 400 600 800 1000

4 >ON O[]

Virtualization Technologies Real-Time VMs

Kernels Core Duo Core i7

Xen | KVM Xen | KVM
NRT/NRT | 3216us | 851us | 785us | 275us
NRT/RT | 4152us | 463us | 1589us | 243us
RT/NRT | 3232us | 233us | 791us | 99us
RT/RT 3956 s | Tlus | 1541us | 72us

e Preempt-RT helps a lot with KVM
Good worst-case values (less than 100.us)
e Preempt-RT in the guest is dangerous for Xen
Worst-case values stay high

Virtualization Technologies Real-Time VMs

Hypervisor vs Kernel

KV™mM \ Xen

1 e EEE = 1 v
0.9
08 [0.8 [
0.7
0.6 [0.6 -
0.5
0.4 [H0.4 -
0.3
0.2 | 40.2 |
0.1 DomO latency (RT) M
Host kernel latency [| DomoO latency (NRT)
kvm latency Xen latency W
OD | | | | | | | O | | |
0 10 20 30 40 50 60 70 80 O 200 300 400 500

e Worst Cases:

o Host: 29us
o DomO0: 201us with Preempt-RT, 630us with NRT

Virtualization Technologies Real-Time VMs

Investigating Xen Latencies

KVM: usable for real-time workloads
e Xen: strange results

_arger latencies in general
Using Preempt-RT in the guest increases the
atencies?

e Xen latencies are not due to the hypervisor's
scheduler

Repeating the experiments with the null
scheduler did not decrease the experienced
latencies

Virtualization Technologies Real-Time VMs

Impact of the Kernel Stress

e Experiments repeated without “Kernel Stress” on
Dom0O

This time, using Preempt-RT in the guest
reduces latencies!

Strange result: DomO load should not affect the
guest latencies...

Kernels Core Duo Core i7
Stress | No Stress | Stress | No Stress
NRT/NRT | 3216us 3179us | 785us 1607 145

NRT/RT | 4152us 1083 s | 1589us 7871
RT/NRT | 3232us 3359us | 791us 1523148
RT/RT 3956145 960us | 1541us 795118

Virtualization Technologies Real-Time VMs

Virtualization Mechanisms

e Xen virtualization: PV, HVM, PVH, ...

PV: everything is para-virtualized

HVM: full hardware emulation (through gemu) for
devices (some para-virtualized devices, t00); use
CPU virtualization extensions (Intel VI-x, etc...)
PVH: hardware virtualization for the CPU +
para-virtualized devices (trade-off between the

two)
Guest Kernel PV PVH | HVM
NRT 661us | 1276us | 1187 us
RT 178us | 216us | 4470us

Virtualization Technologies Real-Time VMs

What’s up with HVM?

e HVM uses gemu as DM

gemu instance running in DomO

Used for boot and emulating some devices...
...But somehow involved in the strange
latencies!!!

e Scheduling all gemu threads with priority 99, the
worst-case latencies are comparable with PV /
PVH!!

High HVM latencies due to the Kernel Stress
workload preempting gemu...

e Summing up: for good real-time performance, use
PV or PVH!

Virtualization Technologies Real-Time VMs

Cyclictest Period

Most of the latencies larger than cyclictest period...
e Are hypervisor’s timers able to respect that period?

Example of timer resolution latency...
e So, let’s try a larger period!

500us and 1ms instead of 50us
Measure timer resolution latency — no kernel
stress

e Results are much better!

P = 500us: worst-case latency 112us (HVM),
82us (PVH) or 101us (PV)

P = 1000us: worst-case latency 129us (HVM),
124us (PVH) or 113us (PV)

Virtualization Technologies Real-Time VMs

Further Analysis

e Xen latencies seem to be mainly due to timer
resolution latency

Turned out to be an issue in the Linux code
handling Xen's para-virtualized timers

e Linux jargon: “clockevent device”

Does not activate a timer at less than 100us from
current time (TIMER_SLOP)

e After reducing the timer slop, average latency
smaller than 50us even for cyclictest with period 50

Still larger than KVM latencies (probably due to
non-preemptable sections?)

Virtualization Technologies Real-Time VMs

Reproducible Results

e Results can be reproduced on your test machine

You just need some manual installation of KVM,
Xen, etc...

http://retis.santannapisa.it/luca/VMLatencies

e Scripts to reproduce the previous experiments

Number depends on the hw, but the obtained
figures are consistent with the previous results

e The other figures can be easily ontained modifying
scripts / configuration files

Virtualization Technologies Real-Time VMs

http://retis.santannapisa.it/luca/VMLatencies

e Latencies experiencedina VM (cyclictest)

KVM: Preempt-RT allows to achieve low
latencies — usable for real-time

Xen: high latencies, Preempt-RT does not help,
strange impact of the DomO load

e Xen behaves better when PV or PVH is used

Part of the latencies due to the DM (gemu
running in Dom0)?

e Xen experiences a large timer resolution latency
Fixable by modifying the guest kernel

Virtualization Technologies Real-Time VMs

Latencies and Scheduling

e Most of the industrial work on real-time virtualization
focused on latency reduction

Example: real-time KVM industrial solution based
on vCPU pinning — No scheduling!!!

e Scheduling VMs is still needed to share hardware
resources...

Bounded latencies are needed to have precisa
and accurate vCPU scheduling...

...But appropriate scheduling algorithms are still
needed!!!

e Advanced scheduling algoritms are useless if
latencies are not bounded, and bounded latencies
are useless if appropriate scheduling is not used!

Virtualization Technologies Real-Time VMs

Combining Real-Time Guarantees

e Schedulability analysis in each VM...
e What about the resulting system?

Virtualization Technologies Real-Time VMs

Real-Time Applications Inside VMs

e VM C’ contains n' tasks
How to analyze its schedulability?

We only know how to schedule single tasks...
And we need to somehow “summarise” the

requirements of a VM!
Ci — {(087 Dév Té)v (Cia Div Tf)? S o (C;ﬂ? D;ivﬂ?? T;ﬂ)}

e S0, 2 main issues:

1. Describe the temporal requirements of a VM in a

simple way
2. Schedule the VMs, and somehow “combine”
their temporal guarantees

Virtualization Technologies Real-Time VMs

The “not so smart” Solution

e FEach VM is a set of real-time tasks:

C'={(C;,D:, T}

e Build the “global taskset” composed by all the tasks
from all the VMs

quﬁ

e ...And use some known real-time scheduler (RM,
EDF, ...) on T

Virtualization Technologies Real-Time VMs

Flattened Scheduling

e One single “flattened” scheduler seeing all the tasks

Virtualization Technologies Real-Time VMs

Why it is “not so smart”

e One single scheduler, that must “see” all the tasks of
all the VMs

Internals of the VMs have to be exposed!
VMs cannot run their own “local” schedulers
Misbehaving tasks in a VM can affect other VMs

e No isolation!!!

e Using fixed priorities might be “not so simple”

Think about RM: priorities in a VM might depend
on other VMs...

Virtualization Technologies Real-Time VMs

Practical Issues

e The host/hypervisor scheduler only sees a VMSs, but
cannot see the tasks inside it
e Para-virtualization (of the OS scheduler) could be
used to address this issue, but it is not so simple...
e ...And requires huge modifications to host, guest,
and applications!
So, how to schedule VMs?
Two-level hierarchical scheduling system

Host (global / root) scheduler, scheduling VMs
Each VM contains its (local / 2nd level) scheduler

Virtualization Technologies Real-Time VMs

From a 1-Level Scheduler...

{Scheduler}

e Scheduler assigns CPU to tasks “inside the VMSs”

Virtualization Technologies Real-Time VMs

...10 a 2-Levels Hierarchy

Local Schedule Local Schedule Local Schedule
Root
Scheduler

e Host Scheduler assigns CPU to VMs
e Local Schedulers assign CPU to single tasks

Virtualization Technologies Real-Time VMs

Hierarchical Scheduling

e [he root scheduler does not see the tasks
The OSs inside VMs are free to define their own
(fixed priorities, EDF, whatever) schedulers

No problems in assigning fixed priorities to tasks!

Root scheduler: host / hypervisor scheduler
_ocal scheduler: guest scheduler
Problem: what to use as a root scheduler?

We must have a model for it
Must allow to compose the “local guarantees”

e Before going on, summary of RT definitions and
concepts

Virtualization Technologies Real-Time VMs

Real-Time Guarantees in a Component

e First requirement: analyse the schedulability of a
component independently from other components

This means that the root scheduler must provide
some kind of temporal protection between
components

e Various possibilities

Resource Reservations / server-based approach
Static time partitioning

e In any case, the root scheduler must
guarantee that each VM recelives a

minimum amount of resources in a
time interval

Virtualization Technologies Real-Time VMs

Schedulability Analysis: the Basic Idea

(Over?)Simplifying things a little bit...

...ouppose to know the amount of time needed by a
component to respect its temporal constraints and
the amount of time provided by the root scheduler

e A component is “schedulable” if

demanded time < supplied time

“demanded time”: amount of time (in a time

interval) needed by a component
“supplied time”: amount of time (in a time
interval) given by the root scheduler to a

component
e Of course the devil is in the details

Virtualization Technologies Real-Time VMs

Demanded Time

e Amount of time needed by a component to respect
its temporal constraints

Depends on the time interval we are considering
Depends on the component’s local scheduler

e EDF — dbf(t) = =;max{0, | "2)¢,
e RM: — workload W (t) = C; + >, {H oF
Note: W (t) is very pessimistic, dbf(t) is not

e This is the description of the temporal requirements
of a component we were searching for...
e And what about the supplied time?

Virtualization Technologies Real-Time VMs

Supplied Time

Description of the root scheduler temporal behaviour
e More formally:

Depends on the time interval ¢ we are
considering
Depends on the root scheduler A

e Minimum amount of time given by Atoa VM in a
time interval of size s

Given all the time interval (ty,t1) : t1 — tg = s...
...Compute the size of the sub-interval in which
o(t)y=VM...

...And then find the minimum!

Virtualization Technologies Real-Time VMs

Supplied Time Bound Function

e Even more formally:

| 1 ifa(t)=VM
» Define s(t) = { 0 (()t)herwise

o Time for VM in (tg, 2o + s): /"7 s(t)dt
o Then, compute the minimum over ¢

o sbf(t) = miny, ;" s(z)dx

Virtualization Technologies Real-Time VMs

Example: Static Time Partitioning

e First (very simple) example of VM scheduling: static
time partitioning

Static schedule describing when time is assigned
to each VM
Pre-computed o (?)

e Generally, periodic!

Otherwise, need to store an infinite schedule...
...Might be problematic!

e Example: VM, is scheduled in (3,4), (9,10), (15, 16),

More formally: s(¢) = 1if 6k + 3 <t < 6k + 4,
s(t) = 0 otherwise

Virtualization Technologies Real-Time VMs

Example: Static Time Partitioning - 2

{1 if 6k -3 <t <6k+4
s(t) =

0 otherwise

e What is the supply bound function sbf(¢) in this
case?

e Let’s try different supply functions compatibe with
this schedule...

e ...And see what is the worst case!

Intervals of size ¢ starting at different times...

Virtualization Technologies Real-Time VMs

Example: Static Time Partitioning - 3

/
=

e Different supply functions depending on when the

considered interval begins
e Which one is the worst case (supply bound

function)?

Virtualization Technologies Real-Time VMs

Example: Static Time Partitioning - 4

/

—
—

e Different supply functions depending on when the

considered interval begins
e Which one is the worst case (supply bound

function)?
The red one!

Virtualization Technologies Real-Time VMs

Example: Static Time Partitioning - 5

/
/

Virtualization Technologies Real-Time VMs

Periodic Servers

e Periodic Server S = (@), P): guarantees () units of
time every period P

Can be implemented in different ways (example:
CBS)

e Different from static allocation: we do not know
where in the period the () time units are allocated

Execution inside a period can even be
preempted!

B B _

Virtualization Technologies Real-Time VMs

Periodic Servers — Supplied Time

e sbf(t): minimum amount of time that a VM is
guaranteed to receive in a time interval of size ¢

Consider all the possible intervals of size ¢...
e As already seen for static time partitioning

...And all the possible “legal CPU allocations”
generated by the periodic server!

e Big difference with static time partitioning: consider
all the possible allocations of () in the period

Virtualization Technologies Real-Time VMs

The Wrong Solution

e Immagine (Is allocated at the beginning of the
period

Worst case allocation: t0 immediately after ()
The time interval starts when the root scheduler
deschedules the component

Virtualization Technologies Real-Time VMs

The Wrong Solution — 2

e Suppliedtime: O until P — Q...
e ...Thenincreases with slope 1 until P...
e ..Then flat again until 2P — (...
o
” ift < (P —Q)
sbf(t) = « (1)Q if (n—1)P<t<nP-—0Q
t+nQ —n—1)P iftnP—-—Q<t<nP

Virtualization Technologies Real-Time VMs

Why Wrong?

e The previous computation assumed () always at the
beginning of a period...
e ...Butthis is not the worst case!

Think about the second period...

...What happens if the root scheduler delays the
allocation?

The initial “0 allocation period” increases!!!

e Worst-case schedule: @) at the beginning of the first
period and at the end of the second one

See the difference with static time partitioning?

Virtualization Technologies Real-Time VMs

Considering the Worst-Case Situation

2(P-Q) Q P-Q /

2(P-Q) 2P-Q 3P-2Q 3P-Q 4P-2Q 4P-Q
Q 2(P-Q) P-Q
P p P
f ift < 2(P — Q)
sbf(t) = (n—l) fnP—-—Q<t<(n+1)P—2Q
-+)(P-Q) f(n+)P-2Q0<t<(n+1)P—-Q

Virtualization Technologies Real-Time VMs

Understanding the Supplied Bound Function

e Supplied bound function sbf(t): minimum amount of
time that a VM is guaranteed to receive in a time
interval of size ¢

Considers all the possible intervals of size ¢...
e Strange looking function!

Flat for large intervals of time...

55%—{;(” — 1 in the other intervals

Can we “summarise” it with something simpler?
What about a line (y = ax + b)?

sbf(t) < 0 makes no sense...
S0, better sbf(t) = max{0, at + b}

Virtualization Technologies Real-Time VMs

A Linear Approximation

e sbf(t) =max{0,at + b}... at + b is below 0 for
t< —b/a

» Let’s rewrite the equation... at + b = a(t — A) with
A= —b/a

0 ift < A
sbF(t) = { a(t — A) otherwise

Virtualization Technologies Real-Time VMs

Interpreting the Linear Approximation

e t<A=sbf(t)=0:Aisthe allocation delay for the
VM

Worst-case delay between the VM becoming
active and the root scheduler scheduling it
How much time should | wait before the root
scheduler starts giving the CPU to my VM?

e a (sometimes referred as «) is the bandwidth of the
VM

Minimum fraction of CPU time reserved for the
VM after the initial delay

e Of course, (a,A) should be so that a(t — A) is below
the real sbf()

Virtualization Technologies Real-Time VMs

Periodic Servers Revisited

e How to compute (a, A) for a periodic server (Q°,T%)?
a:%,A:2(T‘9—QS)
e S0, after the initial delay 2(7° — @®) the VM is really
receiving the expected fraction of CPU time (Q°/T%)

If we reduce T° (keeping @° /T unchanged)...
...sbf(t) tends to the “fluid allocation”!

e Why not using very very small server periods?
Of course there is a reason...

Virtualization Technologies Real-Time VMs

The Design Problem

e Given a component (set of tasks and a local
scheduler)...

Described by a time demand function (workload
for fixed priorities)

e ...Find a root scheduler (and scheduling parameters)
able to respect the components’ temporal
constraints

e Problem reduced to solving “sbf(t) > dbf(t)” for a
set of points

Must be verified for all the points in case of EDF
Must be verified for at least one point in case of
fixed priorities

Virtualization Technologies Real-Time VMs

Simplified Design

o shf(t) > dbf(t)
Using sbf(t) = a(t — A)...

a(t — A) > dbf(t) = A < t— dbf(t)

- Q

e Solve this for every (¢,dbf(t)), and plot the solution
on aa — A plane...

e ...Then compute the intersection (for EDF) or union
(for fixed priorities)

Virtualization Technologies Real-Time VMs

	Real-Time in VMs???
	Real-Time in VMs
	Latency
	Example: Periodic Task
	Theoretical Schedule
	Actual Schedule
	Effects of the Latency
	Sources of Latency — 1
	Sources of Latency — 2
	Latency in Linux
	What About VM Latencies?
	Hypervisor Latency
	Hypervisor Latencies
	Worst Cases
	Hypervisor vs Kernel
	Investigating Xen Latencies
	Impact of the Kernel Stress
	Virtualization Mechanisms
	What's up with HVM?
	Cyclictest Period
	Further Analysis
	Reproducible Results
	Summing Up
	Latencies and Scheduling
	Combining Real-Time Guarantees
	Real-Time Applications Inside VMs
	The ``not so smart'' Solution
	Flattened Scheduling
	Why it is ``not so smart''
	Practical Issues
	From a 1-Level Scheduler...
	...To a 2-Levels Hierarchy
	Hierarchical Scheduling
	Real-Time Guarantees in a Component
	Schedulability Analysis: the Basic Idea
	Demanded Time
	Supplied Time
	Supplied Time Bound Function
	Example: Static Time Partitioning
	Example: Static Time Partitioning - 2
	Example: Static Time Partitioning - 3
	Example: Static Time Partitioning - 4
	Example: Static Time Partitioning - 5
	Periodic Servers
	Periodic Servers — Supplied Time
	The Wrong Solution
	The Wrong Solution — 2
	Why Wrong?
	Considering the Worst-Case Situation
	Understanding the Supplied Bound Function
	A Linear Approximation
	Interpreting the Linear Approximation
	Periodic Servers Revisited
	The Design Problem
	Simplified Design

