
I/O Virtualization

Luca Abeni

luca.abeni@santannapisa.it

March 9, 2020



I/O Devices

Virtualization Technologies I/O Virtualization

• I/O devices are generally accessed through registers
and memory-mapped buffers

• Registers to read/set the device state and send
commands to the device

• Memory buffer to transfer large amount of data
• The device can act as a bus master to move data

from/to the memory buffer

• Device registers: either memory-mapped, or in their
own I/O address space

• Accessed through the in and out assembly
instruction in the Intel architecture

• The device can also raise interrupts to notify the OS
kernel about something



I/O Devices Virtualization

Virtualization Technologies I/O Virtualization

• How to handle I/O in a VM?

• The hypervisor/VMM virtualizes I/O devices!
• Handle accesses to the devices’ registers, move

data, generate (virtual) interrupts, ...

• Device registers in the I/O space: the machine
instructions accessing them are sensitive

• Example: on Intel x86, in and out can be
trapped by the hypervisor

• Memory-mapped registers: must be in a read-only
(or privileged) memory page

• When the guest access them, a page fault is
generated...

• ...And the hypervisor can trap it!



Accesses to Virtual Device Registers

Virtualization Technologies I/O Virtualization

• Virtual device: the hypervisor intercepts accesses to
registers

• Again, trap and emulate!

• VM exit every time the guest acceses a register of a
virtual device

• Bare-metal hypervisor: the hypervisor can
emulate the device by itself...

• Hosted hypervisor: the device is often emulated
by a user-space program (VMM/DM)

• Bare-metal hypervisors can sometimes use a
helper process running in a “special guest”
(example: QEMU DM, running in Xen Dom0)



I/O Virtualization Overhead

Virtualization Technologies I/O Virtualization

• For bare-metal hypervisors: VM exit

• Save the guest state, invoke hypervisor, restore
guest state)

• For hosted hypervisors, larger overhead

• Also including (host) kernel / userspace switches
• Example: QEMU/KVM. When the guest

accesses a register, KVM exit: VM exit, the KVM
driver executes, switch to userspace and
schedule QEMU, handle the KVM exit, switch
back to kernel space, and finally restore the guest

• Bare-metal hypervisor using a userspace DM,
running in a guest: the overhead is even higher



Virtualizing Real Devices

Virtualization Technologies I/O Virtualization

• Existing real devices might have complex interfaces

• Lots of registers to be virtualized
• Look at the device documentation for all the

details

• The hypervisor (or VMM/DM) has to emulate all of
them

• Some features might be useless for VMs
(example: line-speed negotiation for a NIC)

• The protocol for handling the device can be
virtualization-unfriendly

• Example: when handling an interrupt, the device
driver might need to read/write multiple registers



Virtualizing Real Devices — Overhead

Virtualization Technologies I/O Virtualization

• Correctly emulating a real device might introduce a
lot of overhead/complexity

• Lot of complexity (even for backward
compatibility / hystorical reasons) not really
needed in virtual environments

• Interfaces/protocols designed to optimize the
performance of physical hardware, not
VMs/hypervisors!!!

• Lot of register accesses→ become VM exits
• The hypervisor/VMM/DM might have to copy a lot

of data between host and guest address spaces

• Hardware and software can be asynchronous, writes
to virtual registers are often synchronous



Paravirtualized Devices

Virtualization Technologies I/O Virtualization

• Most of the mentioned issues can be addressed by
using a different host/guest interface

• Instead of emulating a real physical device,
design a virtual device from scratch

• The guest must be aware that it runs in a VM, to
provide drivers for the new device⇒
paravirtualization!

• Paravirtualized devices designed to reduce
virtualization overhead

• Reduce the device complexity and the number of
virtual registers

• Reduce the amount of VM exits
• Allow to share buffers between host and guest



Paravirtualization Mess

Virtualization Technologies I/O Virtualization

• There is not a standard anymore!

• Every different hypervisor/VM defines its own
devices...

• Guest OSs/kernels must provide drivers for all of
these devices!

• Example: network card

• The VMM can emulate an Intel e1000
• Well-defined “standard”: all OSs support it
• ...But performance are not so good
• The VMM provides its own virtual NIC→ better

performance...
• ...But every OS/kernel must write drivers for it

• Need for a virtual devices standard!!!



Virtio

Virtualization Technologies I/O Virtualization

• Paravirtualization standard, usable for many different
devices

• Provides standard interfaces and mechanisms
upon which different kind of devices can be built

• Here, focus on network and block devices
• Can be seen as a standard message-passing

interface between guest and VMM/hypervisor

• Standard designed to address the explosion of
paravirtualized devices

• Differen hypervisors/VMMs can support it
• Providing drivers for virtio devices, the guest

does not need to care about the VMM details



Virtio Design Goals

Virtualization Technologies I/O Virtualization

• Generic enough to support different kinds of devices
(network, block, video, ...)

• Not bound to any specific hypervisor or guest OS

• Different hypervisors/VMMs implement virtio
devices

• Different guests provide virtio drivers

• Reduce the number of register accesses
• Reduce the number of interrupts
• Use shared memory buffers to exchange information

without VM exits
• Allow NAPI-like techniques to process as much data

as possible before blocking
• Asynchronous operations using different threads



Design — More Details

Virtualization Technologies I/O Virtualization

• The interface/abstractions should be “compatible”
with the internal data structures used by guest kernel
and host hypervisor

• Example: skb for guest network packets

• The host/guest interface has to support fragmented
buffers!

• Use “Scatter-Gather lists” (SG)

• Lists of buffers described as (base,limit) couples
• Base: physical address

• The SG implementation can be smarter than a
simple list

• Allow lock-free access, ...



The VirtQueue Abstraction

Virtualization Technologies I/O Virtualization

• VirtQueue (VQ): transport abstraction used by virtio

• It is a queue of SGs

• The guest (virtio driver) posts (inserts) SGs (buffers)
in the VQ

• The host (VMM/hypervisor) consumes the SGs in
the VQ

• Pushes back SG lists as responses

• There are output SGs (used by the driver to send
data) and input SG lists (used by the driver to
receive data)

• A virtio device contains one or more VQs



VirtQueue Interface — 1

Virtualization Technologies I/O Virtualization

• add buf: used by the guest (virtio driver) to add
SGs in the VQ

• These are commands sent to the virtio device (to
the VMM/hypervisor)

• A token is associated to each SGs to support
out-of-order replies

• get buf: used by the guest (virtio driver) to cleanup
SGs

• Previously added to the VQ by the guest
• Already processed by the host
• Used to receive responses from the virtio device

• kick: used by the guest to notify the host that SGs
have been added



VirtQueue Interface — 2

Virtualization Technologies I/O Virtualization

• The host answers to kick by consuming SGs
posted in the VQ by the guest

• Then the host somehow notifies the guest, and the
guest cleans up the SGs

• Notice that the VQ interface does not specify the
notification mechanism used by the host

• This notification mechanism will be specified in
the implementation

• The guest can poll on get buf until the host sends
notifications, or wait for notifications in some way

• Notifications from the host can be disabled with
disable cb and re-enabled with enable cb



Virtio and Throughput

Virtualization Technologies I/O Virtualization

• The throughput of virtio devices can be improved by
(large) batch processing

• The guest (virtio driver) should enqueue as many
buffers as possible before kicking the host

• The virtio device (the host) should consume as
many buffers as possible before sending back
notifications to the guest

• Risk to increase the latency!!!

• Host thread (thread in the hypervisor/VMM/DM) to
serve the guest kicks

• Guest thread (thread in the virtio driver) to serve the
host/device notifications

• The two threads can have a NAPI-like behaviour



Implementing the VirtQueue Abstraction: virtio ring

Virtualization Technologies I/O Virtualization

• virtio ring: VQ implementation, based on an array of
descriptors (actually, a ring buffer)

• Descriptor: base, size, flags, index of the next
descriptor in SG

• Next is for creating a linked list

• Array (ring buffer) of descriptors ready for use,
posted by the guest: ready ring

• This array is only manipulated by the guest

• Array (ring buffer) of descriptors already processed
(consumed) by the host: used ring

• This array is only manipulated by the host

• This smells lock-free!!!



Implementation Details

Virtualization Technologies I/O Virtualization

• The virtio ring implementation also specifies the
details of guest/host notifications

• Guest notifications to host: kick→ performed by
writing in a (virtual) register

• Only one register write after posting buffers
• Reduce the number of VM exits

• Host notifications to guest→ performed by sending
an interrupt to the guest

• Interrupt handled by the virtio driver
• Can use a NAPI-like thread, can disable

interrupts, ...



Example: virtio-block

Virtualization Technologies I/O Virtualization

• One single VQ for reading and writing
• Every buffer is compsed by at least 3 parts

• A header (which is read-only for the host)
• A data buffer (read-only or write-only for the host,

depending on the type of request)
• A status byte (success, error, or unsupported;

write-only for the host)

• Example: read operation

• The guest allocates the 3 buffers and uses 3
(linked) descriptors for them

• The index of the first descriptor (header) is
inserted in the ready ring

• kick; the host is notified



virtio-block Read — Continued

Virtualization Technologies I/O Virtualization

• The host reacts to the kick by consuming the SG

• Find the index of the header descriptor in the
ready ring

• Reads the header, copies data to the data buffer
(linked by the header descriptor) and writes the
status byte (linked by the data descriptor)

• The index of the first descriptor (header) is
inserted in the used ring

• An interrupt is generated for the guest

• The guest serves the interrupt

• Find the header index in the used ring
• Copy and use the data
• Cleanup



Example: virtio-net

Virtualization Technologies I/O Virtualization

• At least a VQ for rx and a VQ for tx
• Packet transmission: the driver transforms an skb

into an SG posts it in the tx VQ

• List to cope with fragmented packets!
• Inserted in tx VQ by adding the index of the first

descriptor in the ready ring

• kick

• The consumes the SG, sending the packet
(example: QEMU writes to TAP, or similar)

• The index of the first descriptor is inserted in the
used ring, and an interrupt is sent to the guest

• The driver can then cleanup the tx SG processed by
the host (for example, packets sent by QEMU)



virtio-net: Receiving Packets

Virtualization Technologies I/O Virtualization

• The driver posts free buffers (the skb buffers) in the
rx VQ

• Insert the descriptors’ indexes in the ready ring
• kick, and do something else waiting for

interrupts

• When a packet arrives, the host consumes an SG
from the rx VQ

• Find the index of the first usable buffer in the
ready ring

• Copy the packet in tbe buffer

• Then, pushes the SG back in the rx VQ

• Insert the index in the used ring
• Send an interrupt to the guest



Receiving Packets — Continued

Virtualization Technologies I/O Virtualization

• The driver cleans up the SG, receiving the packet

• Get the descriptor index from the used ring
• Allocate a new skb and post its buffer(s) in the rx

VQ (replacing the ones of the received packet)

• Notice: the packet is already in the skb buffers

• The host copied it there

• No locking (or, very simple locking!)



A Linux-Specific Optimization

Virtualization Technologies I/O Virtualization

• Possible setup: KVM driver (hypervisor) + QEMU
userspace process (VMM or DM)

• Every time the guest wants to read/write some data:

• At least one register access→ VM Exit
• Handled by KVM in kernel space, then KVM Exit
• QEMU is scheduled to handle the KVM exit;

moves some data and then restart KVM RUN

• KVM executes in kernel space again
• The guest is restarted (interrupt handler)

• For complex devices, there are no alternatives...
• ...But for virtio QEMU is scheduled just to do a little

bit more than memcpy()!!!

• Can we do something better (more optimized)?



User-Space DM

Virtualization Technologies I/O Virtualization

• Advantage: ,ove complexity to userspace (more
secure, ...)

• Disadvantage: more overhead
• For virtio, one register write (kick) when new buffers

are in the VQ
• The DM just has to consume the buffers, copying

some data

• Example: to send packets through virtio-net,
copy them from VQ to a TAP device

• Maybe this data movement can be performed in
kernel space?

• Without involving user-space prcesses!



Vhost

Virtualization Technologies I/O Virtualization

• Vhost: kernel-space implementation of virtio

• Kernel thread moving data from/to the VQ

• Example: vhost-net→ vhost-net kernel thread
copying buffers between VQ and a TAP-like device

• Standard TAP device, macvtap, ...
• Does not avoid VM exits, but avoids KVM exits
• Can avoid a lot of kernel-space/user-space

switches

• Can improve virtio throguhput (and reduce latency)
by moving functionalities to the kernel



Vhost-User

Virtualization Technologies I/O Virtualization

• Vhost idea: virtio implementation out of QEMU

• More in general, out of the user-space DM
• Original vhost: use a kernel thread

• Vhost-user: implement virtio in an external
user-space process

• Example: for the network, implement in a
user-space vswitch

• Instead of using a kernel thread to copy packets
tp a TAP device and read them from a vswitch,
process, implement virtio in the vswitch

• Isn’t vhost-user re-introducing overhead?

• Kernel-space/user-space switches, signalling via
sockets, ...



Vhost-User Performance

Virtualization Technologies I/O Virtualization

• User-space implementation of vhost
• Use unix-domain sockets for signalling
• Use shared memory buffers for virtio ring

• Memory buffers shared between guest and
vhost-user process...

• Instead of relying on signalling, the vhost-user
process can busy-wait (poll) for buffers in the
virtio ring...

• The vhost-user process does not block← no
user-space/kernel-space switches

• Exitless virtio implementation!

• Kicks and interrupts are not needed

• Example: implementation based on DPDK PMD


	I/O Devices
	I/O Devices Virtualization
	Accesses to Virtual Device Registers
	I/O Virtualization Overhead
	Virtualizing Real Devices
	Virtualizing Real Devices — Overhead
	Paravirtualized Devices
	Paravirtualization Mess
	Virtio
	Virtio Design Goals
	Design — More Details
	The VirtQueue Abstraction
	VirtQueue Interface — 1
	VirtQueue Interface — 2
	Virtio and Throughput
	Implementing the VirtQueue Abstraction: virtio_ring
	Implementation Details
	Example: virtio-block
	virtio-block Read — Continued
	Example: virtio-net
	virtio-net: Receiving Packets
	Receiving Packets — Continued
	A Linux-Specific Optimization
	User-Space DM
	Vhost
	Vhost-User
	Vhost-User Performance

