I/0O Virtualization

Luca Abeni
luca.abeni@santannapisa.it

March 9, 2020



/O Devices

e |/O devices are generally accessed through registers
and memory-mapped buffers

Registers to read/set the device state and send

commands to the device
Memory buffer to transfer large amount of data
The device can act as a bus masterto move data

from/to the memory buffer

e Device registers: either memory-mapped, or in their
own I/O address space

Accessed through the in and out assembly
instruction in the Intel architecture

e The device can also raise interrupts to notify the OS
kernel about something

Virtualization Technologies I/O Virtualization



1/O Devices Virtualization

e How to handle I/O in a VM?

The hypervisor/VMM virtualizes 1/0O devices!
Handle accesses to the devices’ registers, move
data, generate (virtual) interrupts, ...

e Device reqisters in the 1/0O space: the machine
Instructions accessing them are sensitive

Example: on Intel x86, in and out can be
trapped by the hypervisor

e Memory-mapped registers: must be in a read-only
(or privileged) memory page

When the guest access them, a page fault is
generated...
...And the hypervisor can trap it!

Virtualization Technologies I/O Virtualization



Accesses to Virtual Device Registers

e Virtual device: the hypervisor intercepts accesses to
registers

Again, trap and emulate!

e VM exit every time the guest acceses a register of a
virtual device

Bare-metal hypervisor: the hypervisor can
emulate the device by itself...

Hosted hypervisor: the device is often emulated
by a user-space program (VMM/DM)
Bare-metal hypervisors can sometimes use a
helper process running in a “special guest”
(example: QEMU DM, running in Xen DomO)

Virtualization Technologies I/O Virtualization



/O Virtualization Overhead

e For bare-metal hypervisors: VM exit

Save the guest state, invoke hypervisor, restore
guest state)

e For hosted hypervisors, larger overhead

Also including (host) kernel / userspace switches
Example: QEMU/KVM. When the guest
accesses a register, KVM exit: VM exit, the KVM
driver executes, switch to userspace and
schedule QEMU, handle the KVM exit, switch
back to kernel space, and finally restore the guest

e Bare-metal hypervisor using a userspace DM,
running in a guest: the overhead is even higher

Virtualization Technologies I/O Virtualization



Virtualizing Real Devices

e Existing real devices might have complex interfaces

Lots of registers to be virtualized
Look at the device documentation for all the
details

e The hypervisor (or VMM/DM) has to emulate all of
them

Some features might be useless for VMs
(example: line-speed negotiation for a NIC)

e The protocol for handling the device can be
virtualization-unfriendly

Example: when handling an interrupt, the device
driver might need to read/write multiple registers

Virtualization Technologies I/O Virtualization



Virtualizing Real Devices — Overhead

e Correctly emulating a real device might introduce a
lot of overhead/complexity

Lot of complexity (even for backward
compatibility / hystorical reasons) not really
needed in virtual environments

e Interfaces/protocols designed to optimize the
performance of physical hardware, not
VMs/hypervisors!!!

Lot of register accesses — become VM exits
The hypervisor/VMM/DM might have to copy a lot
of data between host and guest address spaces

e Hardware and software can be asynchronous, writes
to virtual reqgisters are often synchronous

Virtualization Technologies I/O Virtualization



Paravirtualized Devices

e Most of the mentioned issues can be addressed by
using a different host/guest interface

Instead of emulating a real physical device,
design a virtual device from scratch

The guest must be aware that it runs in a VM, to
provide drivers for the new device =
paravirtualization!

e Paravirtualized devices designed to reduce
virtualization overhead

Reduce the device complexity and the number of
virtual registers

Reduce the amount of VM exits

Allow to share buffers between host and guest

Virtualization Technologies I/O Virtualization



Paravirtualization Mess

e There is not a standard anymore!

Every different hypervisor/VM defines its own
devices...

Guest OSs/kernels must provide drivers for all of
these devices!

e Example: network card

The VMM can emulate an Intel e1000
Well-defined “standard”; all OSs support it
...But performance are not so good

The VMM provides its own virtual NIC — better
performance...

...But every OS/kernel must write drivers for it

e Need for a virtual devices standard!!!

Virtualization Technologies I/O Virtualization



e Paravirtualization standard, usable for many different
devices

Provides standard interfaces and mechanisms
upon which different kind of devices can be built
Here, focus on network and block devices

Can be seen as a standard message-passing
interface between guest and VMM/hypervisor

e Standard designed to address the explosion of
paravirtualized devices

Differen hypervisors/VMMSs can support it
Providing drivers for virtio devices, the guest
does not need to care about the VMM details

Virtualization Technologies I/O Virtualization



Virtio Design Goals

e (Generic enough to support different kinds of devices
(network, block, video, ...)
e Not bound to any specific hypervisor or guest OS

Different hypervisors/VMMs implement virtio
devices
Different guests provide virtio drivers

Reduce the number of register accesses

Reduce the number of interrupts

Use shared memory buffers to exchange information
without VM exits

e Allow NAPI-like technigues to process as much data
as possible before blocking

e Asynchronous operations using different threads

Virtualization Technologies I/O Virtualization



Desigh — More Details

e The Interface/abstractions should be “compatible”
with the internal data structures used by guest kernel
and host hypervisor

Example: skb for guest network packets

e The host/guest interface has to support fragmented
buffers!
e Use “Scatter-Gather lists” (SG)

Lists of buffers described as (base,limit) couples
Base: physical address

e The SG implementation can be smarter than a
simple list

Allow lock-free access, ...

Virtualization Technologies I/O Virtualization



The VirtQueue Abstraction

e VirtQueue (VQ): transport abstraction used by virtio
It is a queue of SGs

e The guest (virtio driver) posts (inserts) SGs (buffers)
in the VQ

e The host (VMM/hypervisor) consumes the SGs in
the VQ

Pushes back SG lists as responses

e There are output SGs (used by the driver to send
data) and input SG lists (used by the driver to
receive data)

e A virtio device contains one or more VQs

Virtualization Technologies I/O Virtualization



VirtQueue Interface — 1

e add_buf: used by the guest (virtio driver) to add
SGs in the VQ

These are commands sent to the virtio device (to
the VMM/hypervisor)

A token is associated to each SGs to support
out-of-order replies

e get_buf: used by the guest (virtio driver) to cleanup
SGs

Previously added to the VQ by the guest
Already processed by the host
Used to receive responses from the virtio device

e kick: used by the guest to notify the host that SGs
have been added

Virtualization Technologies I/O Virtualization



VirtQueue Interface — 2

e The host answers to kick by consuming SGs
posted in the VQ by the guest

e Then the host somehow notifies the guest, and the
guest cleans up the SGs

Notice that the VQ interface does not specify the
notification mechanism used by the host

This notification mechanism will be specified in
the implementation

e The guest can poll on get_buf until the host sends
notifications, or wait for notifications in some way

e Notifications from the host can be disabled with
disable_cb and re-enabled with enable_cb

Virtualization Technologies I/O Virtualization



Virtio and Throughput

e The throughput of virtio devices can be improved by
(large) batch processing

The guest (virtio driver) should enqueue as many
buffers as possible before kicking the host

The virtio device (the host) should consume as
many buffers as possible before sending back
notifications to the guest

Risk to increase the latency!!!

e Host thread (thread in the hypervisor/VMM/DM) to
serve the guest kicks

e Quest thread (thread in the virtio driver) to serve the
host/device notifications

The two threads can have a NAPI-like behaviour

Virtualization Technologies I/O Virtualization



Implementing the VirtQueue Abstraction: virtio_ring

e Vvirtio_ring: VQ implementation, based on an array of
descriptors (actually, a ring buffer)

Descriptor: base, size, flags, index of the next
descriptor in SG
Next is for creating a linked list

e Array (ring buffer) of descriptors ready for use,
posted by the guest: ready ring

This array is only manipulated by the guest

e Array (ring buffer) of descriptors already processed
(consumed) by the host: used ring

This array is only manipulated by the host
e This smells lock-free!!!

Virtualization Technologies I/O Virtualization



Implementation Details

e The virtio_ring implementation also specifies the
details of guest/host notifications

e Quest notifications to host: kick — performed by
writing in a (virtual) register

Only one register write after posting buffers
Reduce the number of VM exits

e Host notifications to guest — performed by sending
an interrupt to the guest

Interrupt handled by the virtio driver
Can use a NAPI-like thread, can disable
interrupts, ...

Virtualization Technologies I/O Virtualization



Example: virtio-block

e One single VQ for reading and writing
Every buffer is compsed by at least 3 parts

A header (which is read-only for the host)

A data buffer (read-only or write-only for the host,
depending on the type of request)

A status byte (success, error, or unsupported;
write-only for the host)

e Example: read operation

The guest allocates the 3 buffers and uses 3
(linked) descriptors for them

The index of the first descriptor (header) is
inserted in the ready ring

kick; the host is notified

Virtualization Technologies I/O Virtualization



virtio-block Read — Continued

e The host reacts to the kick by consuming the SG

Find the index of the header descriptor in the
ready ring

Reads the header, copies data to the data buffer
(linked by the header descriptor) and writes the
status byte (linked by the data descriptor)

The index of the first descriptor (header) Is
inserted in the used ring

An interrupt is generated for the guest

e The guest serves the interrupt

Find the header index in the used ring
Copy and use the data
Cleanup

Virtualization Technologies I/O Virtualization



Example: virtio-net

e Atleasta VQ for rx and a VQ for tx
e Packet transmission: the driver transforms an skb
into an SG posts it in the tx VQ

List to cope with fragmented packets!
Inserted in tx VQ by adding the index of the first
descriptor in the ready ring

kick
The consumes the SG, sending the packet
(example: QEMU writes to TAP, or similar)

e The index of the first descriptor is inserted in the
used ring, and an interrupt is sent to the guest

e The driver can then cleanup the tx SG processed by
the host (for example, packets sent by QEMU)

Virtualization Technologies I/O Virtualization



virtio-net: Receiving Packets

e The driver posts free buffers (the skb buffers) in the
rx VQ

Insert the descriptors’ indexes in the ready ring
kick, and do something else waiting for
interrupts

e When a packet arrives, the host consumes an SG
from the rx VQ

Find the index of the first usable buffer in the
ready ring
Copy the packet in tbe buffer

e Then, pushes the SG back in the rx VQ

Insert the index in the used ring
Send an interrupt to the guest

Virtualization Technologies I/O Virtualization



Receiving Packets — Continued

The driver cleans up the SG, receiving the packet

Get the descriptor index from the used ring
Allocate a new skb and post its buffer(s) in the rx
VQ (replacing the ones of the received packet)

Notice: the packet is already in the skb buffers
The host copied it there
No locking (or, very simple locking!)

Virtualization Technologies I/O Virtualization



A Linux-Specific Optimization

e Possible setup: KVM driver (hypervisor) + QEMU
userspace process (VMM or DM)

e Every time the guest wants to read/write some data:

At least one register access — VM Exit

Handled by KVM in kernel space, then KVM EXxit
QEMU is scheduled to handle the KVM exit;
moves some data and then restart KVM_RUN
KVM executes in kernel space again

The guest is restarted (interrupt handler)

e For complex devices, there are no alternatives...

...But for virtio QEMU is scheduled just to do a little
bit more than memcpy () !!!

Can we do something better (more optimized)?

Virtualization Technologies I/O Virtualization



User-Space DM

e Advantage: ,ove complexity to userspace (more
secure, ...)
Disadvantage: more overhead
For virtio, one register write (kick) when new buffers
are in the VQ

e The DM just has to consume the buffers, copying
some data

Example: to send packets through virtio-net,
copy them from VQ to a TAP device

e Maybe this data movement can be performed in
kernel space?

Without involving user-space prcesses!

Virtualization Technologies I/O Virtualization



e Vhost: kernel-space implementation of virtio
Kernel thread moving data from/to the VQ

e Example: vhost-net — vhost—-net kernel thread
copying buffers between VQ and a TAP-like device

Standard TAP device, macvtap, ...

Does not avoid VM exits, but avoids KVM exits
Can avoid a lot of kernel-space/user-space
switches

e (Can improve virtio throguhput (and reduce latency)
by moving functionalities to the kernel

Virtualization Technologies I/O Virtualization



Vhost-User

e Vhost idea: virtio implementation out of QEMU

More in general, out of the user-space DM
Original vhost: use a kernel thread

e Vhost-user: implement virtio in an external
user-space process

Example: for the network, implement in a
user-space vswitch

Instead of using a kernel thread to copy packets
tp a TAP device and read them from a vswitch,
process, implement virtio in the vswitch

e Isn’t vhost-user re-introducing overhead?

Kernel-space/user-space switches, signalling via
sockets, ...

Virtualization Technologies I/O Virtualization



Vhost-User Performance

User-space implementation of vhost
Use unix-domain sockets for signalling
Use shared memory buffers for virtio_ring

Memory buffers shared between guest and
vhost-user process...

Instead of relying on signalling, the vhost-user
process can busy-wait (poll) for buffers in the
virtio_ring...

The vhost-user process does not block «+ no
user-space/kernel-space switches

e Exitless virtio implementation!
Kicks and interrupts are not needed
e Example: implementation based on DPDK PMD

Virtualization Technologies I/O Virtualization




	I/O Devices
	I/O Devices Virtualization
	Accesses to Virtual Device Registers
	I/O Virtualization Overhead
	Virtualizing Real Devices
	Virtualizing Real Devices — Overhead
	Paravirtualized Devices
	Paravirtualization Mess
	Virtio
	Virtio Design Goals
	Design — More Details
	The VirtQueue Abstraction
	VirtQueue Interface — 1
	VirtQueue Interface — 2
	Virtio and Throughput
	Implementing the VirtQueue Abstraction: virtio_ring
	Implementation Details
	Example: virtio-block
	virtio-block Read — Continued
	Example: virtio-net
	virtio-net: Receiving Packets
	Receiving Packets — Continued
	A Linux-Specific Optimization
	User-Space DM
	Vhost
	Vhost-User
	Vhost-User Performance

