Container-Based
Virtualization

Luca Abeni
luca.abeni@santannapisa.it

January 9, 2022



OS-Level Virtualization

e The OS kernel (or the whole OS) is virtualized

Focus on kernel virtualization — container-based
virtualization

Guests can provide the user-space part of the
OS (system libraries + binaries, boot scripts, ...)
or just an application...

...But continue to use the host OS kernel!

e One single OS kernel (the host kernel) in the system
The kernel virtualizes all (or part) of its services

e Inthis case, a Virtual Machine is based on an
efficient, isolated duplicate of an OS kernel!

How to provide isolation?

Virtualization Technologies Container-Based Virtualization



What is a Container, Anyway?

We consider container-based virtualization, but...
...What is a container?

Guess? Once again, multiple possible definitions...
Common properties of a container:

It contains a group of processes...
e Organized as a tree, with a root process

...All running on the same host...
And provides isolation between this group of
processes and the rest of the host!

Isolation (whatever it means) is the key point, here!
Again, how to provide this isolation?

Virtualization Technologies Container-Based Virtualization



Historical Filesystem Isolation: chroot

e chroot () system call: changes the root directory
(/) of a process

Yes, there are per-process root directories!

e Absolute pathnames start from the root directory and
by definition the parent of the root directory does not
exist (and /.. == /)

e 350, In theory after chroot (path) it is not possible to
create pathnames referring files outside of path

Form of filesystem isolation?

e In the past, used by daemons to limit filesystem
access

Virtualization Technologies Container-Based Virtualization



chroot Isolation: Not So Strong...

e The chroot () system call just changes the root
directory

It does not prevent accessing the rest of the
filesystem; it just prevents creating pathnames
pointing to It...

Moreover, it does not prevent mounting the
filesystem again...

...It does not affect network connections or
devices...

...And it does not isolate processes!

e \ery weak form of isolation: easy to break it!

Can you show some kind of lack of isolation?
Can you escape a chroot?

Virtualization Technologies Container-Based Virtualization



Real Isolation: Namespaces

e Namespace abstraction: introduced to fix the chroot
Issues

Allow to create isolation for specific
functionalities/resources by controlling what a
group of processes can see...

e Namespaces allow different groups of processes to
have different views of the system
e Main namespaces: mnt, pid, net, ipc, uts, user, ...

mnt namespace: filesystems mounted inside the
namespace are not visible outside

pid namespace: pids are mapped to different
values inside the namespaces

Virtualization Technologies Container-Based Virtualization



Namespaces — Again

e net namespace: network interfaces (and routing
tables, etc...) inside the namespace are not visible
outside (and vice-versa)

Ipc namespace: isolation on system V |IPCs
uts namespace: allows to have different hostnames
iInside and outside the namespace

e Uuser namespace: provide virtualization of user IDs
(a user who is not root outside the namespace can
be root inside, eftc...)

e In general, namespaces have to be implemented for
every resource that affects isolation

e A first level of isolation is given by namespaces

This is for resources visibility; what about
resource consumption?

Virtualization Technologies Container-Based Virtualization



Filesystem Isolation, Revisited

e Why there is no “filesystem namespace”?
Should we use chroot, again?
e [he mount namespace can provide a solution!

If the container rootfs Is on a different device, it is
possible to unmount the rest of the filesystem!

e Of course, we need to play some games to move the
container rootfs to “/”

pivot_root ()
mount () with MS_MOVE

e Possible to use tmpfs or aloop device

Virtualization Technologies Container-Based Virtualization



Control Groups

e Ok, so we have “visibility isolation” with
namespaces...

e Now, let's assume a bad task inside the “VM” starts
forking processes as crazy

This will starve the host tasks (or, at least, it will
interfere with their execution)!
So, we do not have full isolation yet...

e Solution: control groups

Allow to control the resource usage of a group of
processes

e Control groups for memory, CPUs (cpusets),
scheduling, block devices, other devices, PIDs, ...

Virtualization Technologies Container-Based Virtualization



OS-Level Virtual Machines

e Virtual Machine: efficient, isolated duplicate of an
operating system (or operating system kernel)
e Do not virtualise the whole hardware

Only OS services are virtualised
Host kernel: virtualise its services to provide
Isolation among guests

e C(Container: isolated execution environment to
encapsulate one or more processes/tasks

Sort of “chroot on steroids”

e [wo aspects: resource control (scheduling) and
visibility

Virtualization Technologies Container-Based Virtualization



More on “Containers”

e C(Container: resource control and visibility

Control how many resources a VM is using
Make sure that virtual resources of a VM are not
visible in other VMs

e “Resource Containers: A New Facility for Resource
Management in Server Systems” (Banga et al, 1999)

Operating system abstraction containing all the
resources used by an application to achieve a
particular independent activity

e Joday, “container” == execution environment

Used to run a whole OS — VM (with OS-level
virtualization)
Used to run a single application / micro-service

Virtualization Technologies Container-Based Virtualization



Linux Containers

e The Linux kernel does not directly provide the
“container” abstraction

e (Containers can be built based on lower-level
mechanisms: control groups (cgroups) and
namespaces

namespaces: isolate and virtualise system
resources

cgroups: limit, control, or monitor resources used
by groups of tasks

e Namespaces are concerned with resources’ visibility,
cgroups are concerned with scheduling

Virtualization Technologies Container-Based Virtualization



Linux Namespaces

e Used to isolate and virtualise system resources

Processes executing in a namespace have the
illusion to use a dedicated copy of the
namespace resources

Processes in a namespace cannot use (or even
see) resources outside of the namespace

e Processes in a network namespace only see
network interfaces that are assigned to the
namespace

Same for routing table, etc...

e Processes in a PID namespace only see processes
from the same namespace

PIDs can be“private to the namespace”

Virtualization Technologies Container-Based Virtualization



Linux Control Groups

e Used to restrict (limit, control) or monitor the amount
of resources used by “groups of processes”

Processes can be organized in groups, to control
their accesses to resources

e Example: CPU control groups for scheduling

Limit the amount of CPU time that processes can
use, eftc...

e Similar cgroups for other resources
memory, 1O, pids, network, ...

Virtualization Technologies Container-Based Virtualization



Building a Container

e Namespaces and control group give fine-grained
control on processes and resources

Per-resource control groups and/or namespaces
Lower level abstractions respect to other OSs (for
example, FreeBSD jails)

e More powerful than other mechanisms, but more
difficult to use
e To build a container, it is necessary to:

Setup all the needed namespaces and control
groups

Create a “disk image” for the container (directory
containing the container’s fs)

Virtualization Technologies Container-Based Virtualization



Running in a Container

e Chroot to the container fs

Must contain the whole OS, or the libraries/files
needed to execute the program to containerize

e Start init, or the program to containerize

Thanks to the PID namespace, it will have PID 1
in the container!

e Note: init can mount procts or other
pseudo-filesystems

Namespaces allow to control the information
exported in those pseudofilesystems!

Virtualization Technologies Container-Based Virtualization



Example: Networking in Containers

e Thanks to the network namespace, processes
running in a container do not see the host’'s network
interfaces

How to do networking, then?
e Create a virtual ethernet pair

Two virtual ethernet interfaces, connected
point-to-point

Packets sent on one interface are received on the
other, and vice-versa

e Associate one of the two virtual ethernet interfaces
to the network namespace of the container
e Bind the other one to a software bridge

Virtualization Technologies Container-Based Virtualization



User-Space Tools

e Building and running a container can be difficult...
But users do not have to do it “by hand”!!!

e User-space tools for building containers and
deploying OSs/applications in them

Simplest tool: 1xc
(http://linuxcontainers.orqg)
Server-based version of 1xc: 1xd
Docker: more advanced features
Kubernetes

e Recent proliferation of tools, all with different
interfaces/features

Virtualization Technologies Container-Based Virtualization


http://linuxcontainers.org

Ixc / Ixd

e 1xc: set of tools and libraries that allow to easily use
containers, namespaces and friends

Focus on installing and running Linux
distributions in containers

Need root privileges, at least partly
1xd: daemon running with root privileges and using
the 1xc library

Clients can connect to it through a socket to
request operations on containers

More secure, because user tools do not need to
be privileged (the only privileged component is
the daemon)

Virtualization Technologies Container-Based Virtualization



More Advanced Tools

e Docker, Kubernetes and similar allow to also
containerize single applications

Container with application binary, libraries,
needed files, etc...

Useful for distributing consistent execution
environments

More advanced tools respect to 1xc/1xd
Also provide “container images” distributed with
custom image formats

e Lot of different solutions with different features,
interfaces, etc...

Let’s try to organize them

Virtualization Technologies Container-Based Virtualization



Modular Design

e Modern advanced tools such as Kubernetes or
similar have a modular design

The high-level tool can rely on different
components, with well-defined interfaces

e The component responsible for managing the
containers execution is the container runtime

Lot of different tools (even with different features)
with this name

e Example: Kubernetes invokes a runtime manager
implementing the CRI (Container Runtime
Interface)...

...Which invokes yet another container runtime!

Virtualization Technologies Container-Based Virtualization



Container Runtimes

e C(Container runtime: software component used to
create, run, and control/manage containers

Two different kinds: low-level container runtimes,
and high-level ones

Low-level runtimes just creates, run and control
the execution of containers

Based on kernel virtualization — must be
provided with an image format

e High-level runtimes use a low-level container runtime
iImplementing features over it

For example, image management
Allow to containerize single applications

Virtualization Technologies Container-Based Virtualization



Container Runtimes — Examples

e runc: standard low-level container runtime (see OCI
standard)
crun: C re-implementation of runc
1xc: simple low-level container runtime, Ixc
commands are more or less reference
iImplementations

e cri-o: higher level container runtime, uses runc as
a low level, and interfaces with Kunernetes

e podman: higher level container runtime, can use
runc or other standard container runtimes; same
functionalities as Docker

e containerd: higher level container runtime,
Implemented as a daemon, used by Docker

Virtualization Technologies Container-Based Virtualization



Standardizing the Container Tools

e Open Container Initiative (OCI):

https://www.opencontainers.orqg/

Tries to define standards for the user-space tools
Currently, two standards: runtime specification
and image specification

e Runtime specification: standardizes the
configuration, execution environment, and lifecycle of
a container

A “filesystem bundle” described according to this
specification can be started in a container by any
compliant runtime

e Image specification: standardizes how the content of
a container is represented in binary form

Virtualization Technologies Container-Based Virtualization


https://www.opencontainers.org/

OClIl’s Goals

Define containers in a “technology neutral” way
Container: encapsulates a software component and
all its dependencies

Using a format that is self-describing and
portable

Any compliant “runtime” must be able to run it
without extra dependencies

e This must work regardless of the implementation
detalls

Underlying machine, containerization technology,
contents of the container, ...

Virtualization Technologies Container-Based Virtualization



OCI Runtime Specification

e Standardizes important aspects of containers

Configuration: specified through a standardized
config. json, describing all the details of the
container

Execution environment: standardized so that
applications running in containers see a
consistent environment between runtimes
Standard operations possible during the
containers’ lifecycles

e If a“runtime” is compliant with these specifications,
the implementation details do not matter

Virtualization Technologies Container-Based Virtualization



More than Containers

e Looking at the OCI definitions, there is not mention
to OS-level virtualization anymore...

The terms “container” and “containerized
application” are evolving...

e “container” is just a synonim for “lightweight virtual
machine”, independently from the used technology

Kata containers: use kvm-based VMs
(gemu/nemu) instead of namespaces and
cgrouops

Compliant with the OCI runtime specification

e Thanks to OCI, it is possible to almost transparently
replace the runtime/containerization mechanism
without changing userspace tools!

Virtualization Technologies Container-Based Virtualization



	OS-Level Virtualization
	What is a Container, Anyway?
	Historical Filesystem Isolation: chroot
	chroot Isolation: Not So Strong...
	Real Isolation: Namespaces
	Namespaces — Again
	Filesystem Isolation, Revisited
	Control Groups
	OS-Level Virtual Machines
	More on ``Containers''
	Linux Containers
	Linux Namespaces
	Linux Control Groups
	Building a Container
	Running in a Container
	Example: Networking in Containers
	User-Space Tools
	lxc / lxd
	More Advanced Tools
	Modular Design
	Container Runtimes
	Container Runtimes — Examples
	Standardizing the Container Tools
	OCI's Goals
	OCI Runtime Specification
	More than Containers

