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Real-Time Applications

Virtualization Technologies Real-Time VMs

• Real-Time Application: The time when a result
is produced matters

• A correct result produced too late is equivalent to
a wrong result (or to no result)

• What does “too late” mean, here?

• Applications characterised by temporal
constraints that have to be respected!

• Examples:

• Control applications, autonomous driving, ...
• But also infotainment, gaming,

telecommunications, ...!!!



Temporal Constraints
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• Temporal constraints are modelled through
deadlines

• Finish some activity before a time (deadline)
• Generate some data before a deadline
• Terminate some process/thread before a

deadline
• ...

• What happens if a constraint is not respected?

• Simple: the application fails!



Processes, Threads, and Tasks
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• Algorithm → logical procedure used to solve a
problem

• Program → formal description of an algorithm, using
a programming language

• Process → instance of a program (program in
execution)

• Program: static entity
• Process: dynamic entity

• The term task is used to indicate a schedulable
entity (either a process or a thread)

• Thread → flow of execution
• Process → flow of execution + private resources

(address space, file table, etc...)



Real-Time Tasks
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• A task can be seen as a sequence of actions . . .
• . . . and a deadline must be associated to each one

of them!

• Some kind of formal model is needed to identify
these “actions” and associate deadlines to them



Mathematical Model of a Task - 1
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• Real-Time task τi: stream of jobs (or instances) Ji,k
• Each job Ji,k = (ri,k, ci,k, di,k):

• Arrives at time ri,k (activation time)
• Executes for a time ci,k
• Finishes at time fi,k
• Should finish within an absolute deadline di,k

ri,k
f i,k

di,k

ci,k



Mathematical Model of a Task - 2
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• Job: abstraction used to associate deadlines
(temporal constraints) to activities

• ri,k: time when job Ji,k is activated (by an external
event, a timer, an explicit activation, etc...)

• ci,k: computation time needed by job Ji,k to
complete

• di,k: absolute time instant by which job Ji,k must
complete

• job Ji,k respects its deadline if fi,k ≤ di,k

• Response time of job Ji,k: ρi,k = fi,k − ri,k



RT Scheduling: Why?
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• The task set T = {(1, 3), (4, 8)} is not schedulable by
FCFS
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• T = {(1, 3), (4, 8)} is schedulable with other
algorithms
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The Scheduling Problem

Virtualization Technologies Real-Time VMs

• A real-time task τi is properly served if all jobs
respect their deadline...

• ...Appropriate scheduling is important!

• The CPU scheduler must somehow know the
temporal constaints of the tasks...

• ...To schedule them so that such temporal
constraints are respected

• How to schedule real-time tasks? (scheduling
algorithm)

• Is it possible to respect all the deadlines?
• Do commonly used OSs provide appropriate

scheduling algorithms?



Fixed Priority Scheduling
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• Very simple preemptive scheduling algorithm

• Every task τi is assigned a fixed priority pi
• The active task with the highest priority is

scheduled

• Priorities are integer numbers: the higher the
number, the higher the priority

• In the research literature, sometimes authors use
the opposite convention: the lowest the number,
the highest the priority

• In the following we show some examples,
considering periodic tasks, constant execution times,
and deadlines equal to the period



Example of Schedule
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• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)
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Another Example (non-schedulable)
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• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1
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In this case, task τ2 misses its deadline!
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Notes about Priority Scheduling
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• Some considerations about the schedule shown
before:

• The response time of the task with the highest
priority is minimum and equal to its WCET

• The response time of the other tasks depends on
the interference of the higher priority tasks

• The priority assignment may influence the
schedulability of a task set

• Problem: how to assign tasks’ priorities so
that a task set is schedulable?



What About Multiple Cores?
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• How to schedule tasks on multiple CPUs / cores?

• First idea: partitioned scheduling

• Statically assign tasks to CPU cores
• Reduce the problem of scheduling on M cores to M

instances of uniprocessor scheduling

CPU CPU CPU CPU

M



Or...
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• One single task queue, shared by M CPU cores

• The first M ready tasks are selected
• What happens using fixed priorities?
• Tasks are not bound to specific CPUs
• Tasks can often migrate between different CPUs

• Problem: UP schedulers do not work well!
M

CPU CPU CPU CPU

{M



Using Fixed Priorities in Linux
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• SCHED FIFO and SCHED RR use fixed priorities

• They can be used for real-time tasks, to
implement RM and DM

• Real-time tasks have priority over non real-time
(SCHED OTHER) tasks

• The difference between the two policies is visible
when more tasks have the same priority

• In real-time applications, try to avoid multiple
tasks with the same priority



Setting the Scheduling Policy
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int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

int sched_setparam(pid_t pid,
const struct sched_param *param);

• If pid == 0, then the parameters of the running
task are changed

• The only meaningful field of struct sched param

is sched priority



Problems with Real-Time Priorities
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• In general, “regular” (SCHED OTHER) tasks are
scheduled in background respect to real-time ones

• Real-time tasks can / starve other applications
• Example: the following task scheduled at high

priority can make a CPU / core unusable
void bad_bad_task()
{

while(1);
}

• Real-time computation have to be limited (use
real-time priorities only when really needed!)

• Using real-time priorities requires root privileges
(or part of them!)



Real-Time Throttling
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• A “bad” rt task can make a CPU / core unusable...
• ...Linux provides the real-time throttling mechanism

• How does real-time throttling interfere with
real-time guarantees?

• Given a priority assignment, a taskset is
guaranteed all the deadlines if no throttling
mechanism is used...

• ...But, what happens in case of throttling?

• Very useful idea, but something more “theoretically
founded” might be needed...



What About EDF?
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• Can EDF (or similar) be supported in Linux?
• Problem: the kernel is not aware of tasks

deadlines...
• ...But deadlines are needed to schedule the tasks

• EDF schedules tasks based on absolute
deadlines

• So, a more advanced API is needed...



EDF on a real OS
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• More advanced API:

• Assign relative deadlines Di to the tasks...
• A runtime and a period are also needed

• Moreover, di,j = ri,j +Di...

• ...However, how can the scheduler know ri,j?
• The scheduler is not aware of jobs...

• To use EDF, the scheduler must know when a job
starts / finishes

• Modify applications, or guess...



Tasks and Jobs... And Scheduling Deadlines!
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• Applications must be modified to signal the
beginning / end of a job (some kind of startjob()
/ endjob() system call)...

• ...Or the scheduler can assume that a new job
arrives each time a task wakes up!

• Alternative:assign dynamic scheduling deadlines

• Scheduling deadline dsi : assigned by the kernel
• If the scheduling deadline dsi matches the

absolute deadline di,j of a job, then the scheduler
can respect di,j!!!



Real-Time in VMs???
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• Running real-time applications on an RTOS is not a
problem...

• ...But, can real-time applications run in virtual
machines?

• Real-Time in Virtual Machines??? But... Why?

• Component-Based Development

• Complex applications: sets of smaller
components

• Both functional and temporal interfaces

• Security (isolate real-time applications in a VM)
• Easy deployment; Time-sensitive clouds
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Real-Time in VMs
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• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Resource allocation/management
(scheduling)

• Latency (host and guest)

• CPU allocation/scheduling: lot of work in
literature

• Latencies not investigated too much (yet!)

• Virtualization: full hw or OS-level

• OS-Level virtualization: real-time performance of
the host kernel

• Hw virtualization: hypervisors (example: KVM or
Xen) can introduce latencies!



Latency
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• Latency: measure of the difference between the
theoretical and actual schedule

• Task τ expects to be scheduled at time t . . .
• . . . but is actually scheduled at time t′

• ⇒ Latency L = t′ − t

• The latency L can be accounted for in schedulability
analysis

• Similar to what is done for shared resources,
etc...

• Strange “shared resource”: the OS kernel (or the
hypervisor)



Example: Periodic Task
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• Consider a periodic task
/* ... */
while(1) {
/* Job body */
clock_nanosleep(CLOCK_REALTIME,

TIMER_ABSTIME, &r, NULL);
timespec_add_us(&r, period);

}

• The task expects to be executed at time r

(= r0 + jT )...
• ...But is sometimes delayed to r0 + jT + δ



Theoretical Schedule
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Actual Schedule
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• What happens if the 2nd job of τ1 arrives a little bit
later???

• The 2nd job of τ2 misses a deadline!!!



Effects of the Latency
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• Upper bound for L? If not known, no schedulability
analysis!!!

• The latency must be bounded: ∃Lmax : L < Lmax

• If Lmax is too high, only few task sets result to be
schedulable

• The worst-case latency Lmax cannot be too high



Sources of Latency — 1
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• Task: stream of jobs (activations) arriving at time rj
• Task scheduled at time t′ > rj → Delay t′ − rj

caused by:

1. Job arrival (task activation) signaled at time
rj + L1

2. Event served at time rj + L1 + L2

3. Task actually scheduled at ri,j + L1 + L2 + I

L1 2 L3L



Sources of Latency — 2
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• L = L1 + L2 + I
• I: interference from higher priority tasks

• Not really a latency!!!

• L2: non-preemptable section latency Lnp

• Due to non-preemptable sections in the kernel (or
hypervisor!) or to deferred interrupt processing

• L1: delayed interrupt generation

• Generally small
• Hardware (or virtualized) timer interrupt: timer

resolution latency Ltimer



Latency in Linux
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• Tool (cyclictest) to measure the latency

• Periodic task scheduled at the highest priority
• Response time equal to execution time (almost 0)

• Vanilla kernel: depends on the configuration

• Can be tens of milliseconds

• Preempt-RT patchset
(https://wiki.linuxfoundation.org/realtime):
reduce latency to less than 100 microseconds

• Tens of microseconds on well-tuned systems!

• So, real-time on Linux is not an issue

• Is this valid for hypervisors/VMs too?

https://wiki.linuxfoundation.org/realtime


What About VM Latencies?
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• Hypervisor: software component responsible for
executing multiple OSs on the same physical node

• Can introduce latencies too!

• Different kinds of hypervisors:

• Xen: bare-metal hypervisor (below the Linux
kernel)

• Common idea: the hypervisor is small/simple,
so it causes small latencies

• KVM: hosted hypervisor (Linux kernel module)

• Latencies reduced by using Preempt-RT
• Linux developers already did lot of work!!!



Hypervisor Latency

Virtualization Technologies Real-Time VMs

• Same strategy/tools used for measuring kernel
latency

• Idea: run cyclictest in a VM

• cyclictest process ran in the guest OS...
• ...instead of host OS

• cyclictest period: 50µs
• “Kernel stress” to trigger high latencies

• Non-real-time processes performing lot of
syscalls or triggering lots of interrupts

• Executed in the host OS (for KVM) or in Dom0
(for Xen)

• Experiments on multiple x86-based systems



Hypervisor Latencies
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Worst Cases
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Kernels Core Duo Core i7
Xen KVM Xen KVM

NRT/NRT 3216µs 851µs 785µs 275µs
NRT/RT 4152µs 463µs 1589µs 243µs
RT/NRT 3232µs 233µs 791µs 99µs
RT/RT 3956µs 71µs 1541µs 72µs

• Preempt-RT helps a lot with KVM

• Good worst-case values (less than 100µs)

• Preempt-RT in the guest is dangerous for Xen

• Worst-case values stay high



Hypervisor vs Kernel
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Investigating Xen Latencies
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• KVM: usable for real-time workloads
• Xen: strange results

• Larger latencies in general
• Using Preempt-RT in the guest increases the

latencies?

• Xen latencies are not due to the hypervisor’s
scheduler

• Repeating the experiments with the null
scheduler did not decrease the experienced
latencies



Impact of the Kernel Stress
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• Experiments repeated without “Kernel Stress” on
Dom0

• This time, using Preempt-RT in the guest
reduces latencies!

• Strange result: Dom0 load should not affect the
guest latencies...

Kernels Core Duo Core i7
Stress No Stress Stress No Stress

NRT/NRT 3216µs 3179µs 785µs 1607µs
NRT/RT 4152µs 1083µs 1589µs 787µs
RT/NRT 3232µs 3359µs 791µs 1523µs
RT/RT 3956µs 960µs 1541µs 795µs



Virtualization Mechanisms
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• Xen virtualization: PV, HVM, PVH, ...

• PV: everything is para-virtualized
• HVM: full hardware emulation (through qemu) for

devices (some para-virtualized devices, too); use
CPU virtualization extensions (Intel VT-x, etc...)

• PVH: hardware virtualization for the CPU +
para-virtualized devices (trade-off between the
two)

• Dom0 kernel does not affect results; focus on guest
kernel

Guest Kernel PV PVH HVM

NRT 661µs 1276µs 1187µs
RT 178µs 216µs 4470µs



What’s up with HVM?
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• HVM uses qemu as Device Model (DM)

• Qemu instance running in Dom0
• Used for boot and emulating some devices...
• ...But somehow involved in the strange

latencies!!!

• Scheduling all qemu threads with priority 99, the
worst-case latencies are comparable with PV /
PVH!!!

• High HVM latencies due to the Kernel Stress
workload preempting qemu...

• Summing up: for good real-time performance, use
PV or PVH!



Cyclictest Period
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• Most of the latencies larger than cyclictest period...
• Are hypervisor’s timers able to respect that period?

• Example of timer resolution latency...

• So, let’s try a larger period!

• 500µs and 1ms instead of 50µs
• Measure timer resolution latency → no kernel

stress

• Results are much better!

• P = 500µs: worst-case latency 112µs (HVM),
82µs (PVH) or 101µs (PV)

• P = 1000µs: worst-case latency 129µs (HVM),
124µs (PVH) or 113µs (PV)



Further Analysis

Virtualization Technologies Real-Time VMs

• Xen latencies seem to be mainly due to timer
resolution latency

• Turned out to be an issue in the Linux code
handling Xen’s para-virtualized timers

• Linux jargon: “clockevent device”

• Does not activate a timer at less than 100µs from
current time (TIMER SLOP)

• After reducing the timer slop, average latency
smaller than 50µs even for cyclictest with period 50µs

• Still larger than KVM latencies (probably due to
non-preemptable sections?)



Final Results
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• Xen with a properly configured TIMER SLOP:

• Timer resolution latency reduced to almost 0
• Non-preemptable section latency dependent on

the virtualization technology
• Worst-case latencies higly dependent on the

hardware

• Example: some old CPUs need to (trap and)
emulate rdtsc ⇒ 15µs additional latency

• Xeon CPU: 28µs with PVH, 72µs for PV (KVM is
44µs)

• Core 2 CPU: 88µs for PV, 182µs for PVH (KVM is
71µs)



Reproducible Results
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• Results can be reproduced on your test machine

• You just need some manual installation of KVM,
Xen, etc...

http://retis.santannapisa.it/luca/VMLatencies

• Scripts to reproduce the previous experiments

• Numbers depend on the hw, but the obtained
figures are consistent with the previous results

• Other figures can be easily obtained by modifying
scripts / configuration files

http://retis.santannapisa.it/luca/VMLatencies


Summing Up
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• Latencies experienced in a VM (cyclictest)

• KVM: Preempt-RT allows to achieve low
latencies → usable for real-time

• Xen: high latencies, Preempt-RT does not help,
strange impact of the Dom0 load

• Xen behaves better when PV or PVH is used

• Part of the latencies due to the DM (qemu
running in Dom0)?

• Xen experiences a large timer resolution latency

• Fixable by modifying the guest kernel



Latencies and Scheduling

Virtualization Technologies Real-Time VMs

• Most of the industrial work on real-time virtualization
focused on latency reduction

• Example: real-time KVM industrial solution based
on vCPU pinning — No scheduling!!!

• Scheduling VMs is still needed to share hardware
resources...

• Bounded latencies are needed to have precise
and accurate vCPU scheduling...

• ...But appropriate scheduling algorithms are still
needed!!!

• Advanced scheduling algoritms are useless if
latencies are not bounded, and bounded latencies
are useless if appropriate scheduling is not used!



Combining Real-Time Guarantees
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?
• Schedulability analysis in each VM...
• What about the resulting system?



Real-Time Applications Inside VMs
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• VM Ci contains ni tasks
• How to analyze its schedulability?

• We only know how to schedule single tasks...
• And we need to somehow “summarise” the

requirements of a VM!

Ci = {(C i
0, D

i
0, T

i
0), (C

i
1, D

i
1, T

i
1), . . . , (C

i
ni, Di

ni, T i
ni)}

• So, 2 main issues:

1. Describe the temporal requirements of a VM in a
simple way

2. Schedule the VMs, and somehow “combine”
their temporal guarantees



The “not so smart” Solution
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• Each VM is a set of real-time tasks:

Ci = {(C i
j, D

i
j, T

i
j )}

• Build the “global taskset” composed by all the tasks
from all the VMs

Γ =
⋃

i

Ci

• ...And use some known real-time scheduler (RM,
EDF, ...) on Γ!



Flattened Scheduling
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• One single “flattened” scheduler seeing all the tasks



Why it is “not so smart”

Virtualization Technologies Real-Time VMs

• One single scheduler, that must “see” all the tasks of
all the VMs

• Internals of the VMs have to be exposed!
• VMs cannot run their own “local” schedulers
• Misbehaving tasks in a VM can affect other VMs

• No isolation!!!

• Using fixed priorities might be “not so simple”

• Think about RM: priorities in a VM might depend
on other VMs...



Practical Issues
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• The host/hypervisor scheduler only sees a VMs, but
cannot see the tasks inside it

• Para-virtualization (of the OS scheduler) could be
used to address this issue, but it is not so simple...

• ...And requires huge modifications to host, guest,
and applications!

• So, how to schedule VMs?
• Two-level hierarchical scheduling system

• Host (global / root) scheduler, scheduling VMs
• Each VM contains its (local / 2nd level) scheduler



From a 1-Level Scheduler...
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1τ
1τ

1ττn

τn

2

τn

τ

Scheduler

• Scheduler assigns CPU to tasks “inside the VMs”



...To a 2-Levels Hierarchy
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1τ
1τ

1ττn

τn

Local Scheduler Local Scheduler Local Scheduler

2

τn

τ

Scheduler
Root

• Host Scheduler assigns CPU to VMs
• Local Schedulers assign CPU to single tasks



Hierarchical Scheduling
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• The root scheduler does not see the tasks
• The OSs inside VMs are free to define their own

(fixed priorities, EDF, whatever) schedulers

• No problems in assigning fixed priorities to tasks!

• Root scheduler: host / hypervisor scheduler
• Local scheduler: guest scheduler
• Problem: what to use as a root scheduler?

• We must have a model for it
• Must allow to compose the “local guarantees”

• Before going on, summary of RT definitions and
concepts



Real-Time Guarantees in a Component
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• First requirement: analyse the schedulability of a
component independently from other components

• This means that the root scheduler must provide
some kind of temporal protection between
components

• Various possibilities

• Resource Reservations / server-based approach
• Static time partitioning
• ...

• In any case, the root scheduler must
guarantee that each VM receives a
minimum amount of resources in a
time interval



Schedulability Analysis: the Basic Idea
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• (Over?)Simplifying things a little bit...
• ...Suppose to know the amount of time needed by a

component to respect its temporal constraints and
the amount of time provided by the root scheduler

• A component is “schedulable” if

demanded time ≤ supplied time

• “demanded time”: amount of time (in a time
interval) needed by a component

• “supplied time”: amount of time (in a time
interval) given by the root scheduler to a
component

• Of course the devil is in the details



Demanded Time
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• Amount of time needed by a component to respect
its temporal constraints

• Depends on the time interval we are considering
• Depends on the component’s local scheduler

• EDF → dbf(t) =
∑

j max{0,
⌊

t+Tj−Dj

Tj

⌋

}Cj

• RM: → workload W (t) = Ci +
∑

j<i

⌈

t
Ti

⌉

Cj

• Note: W (t) is very pessimistic, dbf(t) is not

• This is the description of the temporal requirements
of a component we were searching for...

• And what about the supplied time?



Supplied Time
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• Description of the root scheduler temporal behaviour
• More formally:

• Depends on the time interval t we are
considering

• Depends on the root scheduler A

• Minimum amount of time given by A to a VM in a
time interval of size s

• Given all the time interval (t0, t1) : t1 − t0 = s...
• ...Compute the size of the sub-interval in which

σ(t) = VM ...
• ...And then find the minimum!



Supplied Time Bound Function
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• Even more formally:

• Define s(t) =







1 if α(t) = VM
0 otherwise

• Time for VM in (t0, t0 + s):
∫ t0+s
t0 s(t)dt

• Then, compute the minimum over t0

• sbf(t) = mint0
∫ t0+t
t0 s(x)dx



Example: Static Time Partitioning
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• First (very simple) example of VM scheduling: static
time partitioning

• Static schedule describing when time is assigned
to each VM

• Pre-computed σ(t)

• Generally, periodic!

• Otherwise, need to store an infinite schedule...
• ...Might be problematic!

• Example: VMA is scheduled in (3, 4), (9, 10), (15, 16),
...

• More formally: s(t) = 1 if 6k + 3 ≤ t ≤ 6k + 4,
s(t) = 0 otherwise



Example: Static Time Partitioning - 2
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s(t) =







1 if 6k + 3 ≤ t ≤ 6k + 4
0 otherwise

• What is the supply bound function sbf(t) in this
case?

• Let’s try different supply functions compatibe with
this schedule...

• ...And see what is the worst case!

• Intervals of size t starting at different times...



Example: Static Time Partitioning - 3
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• Different supply functions depending on when the
considered interval begins

• Which one is the worst case (supply bound
function)?



Example: Static Time Partitioning - 4
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• Different supply functions depending on when the
considered interval begins

• Which one is the worst case (supply bound
function)?

• The red one!



Example: Static Time Partitioning - 5
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Periodic Servers
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• Periodic Server S = (Q,P ): guarantees Q units of
time every period P

• Can be implemented in different ways (example:
CBS)

• Different from static allocation: we do not know
where in the period the Q time units are allocated

• Execution inside a period can even be
preempted!



Periodic Servers — Supplied Time
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• sbf(t): minimum amount of time that a VM is
guaranteed to receive in a time interval of size t

• Consider all the possible intervals of size t...

• As already seen for static time partitioning

• ...And all the possible “legal CPU allocations”
generated by the periodic server!

• Big difference with static time partitioning: consider
all the possible allocations of Q in the period



The Wrong Solution
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• Immagine Q is allocated at the beginning of the
period

• Worst case allocation: t0 immediately after Q
• The time interval starts when the root scheduler

deschedules the component

Q

P PPP P

P − Q P − Q

P − Q Q P−Q

P − Q 2P − QP 2P



The Wrong Solution — 2
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• Supplied time: 0 until P −Q...
• ...Then increases with slope 1 until P ...
• ...Then flat again until 2P −Q...
• ...

sbf(t) =















0 if t < (P −Q)
(n− 1)Q if (n− 1)P ≤ t < nP −Q
t+ nQ− (n− 1)P if nP −Q ≤ t < nP



Why Wrong?
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• The previous computation assumed Q always at the
beginning of a period...

• ...But this is not the worst case!

• Think about the second period...
• ...What happens if the root scheduler delays the

allocation?
• The initial “0 allocation period” increases!!!

• Worst-case schedule: Q at the beginning of the first
period and at the end of the second one

• See the difference with static time partitioning?



Considering the Worst-Case Situation
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P

Q 2(P − Q)

P P

P − Q

P−QQ2(P−Q)

3P−Q3P−2Q2(P−Q) 2P−Q 4P−2Q 4P−Q

sbf(t) =











0 if t < 2(P −Q)
(n− 1)Q if nP −Q ≤ t < (n+ 1)P − 2Q
t− (n+ 1)(P −Q) if (n+ 1)P − 2Q ≤ t < (n+ 1)P −Q



Understanding the Supplied Bound Function
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• Supplied bound function sbf(t): minimum amount of
time that a VM is guaranteed to receive in a time
interval of size t

• Considers all the possible intervals of size t...

• Strange looking function!

• Flat for large intervals of time...

• δsbf(t)
δt

= 1 in the other intervals

• Can we “summarise” it with something simpler?
• What about a line (y = ax+ b)?

• sbf(t) < 0 makes no sense...
• So, better sbf(t) = max{0, at+ b}



A Linear Approximation
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• sbf(t) = max{0, at+ b}... at+ b is below 0 for
t < −b/a

• Let’s rewrite the equation... at+ b = a(t−∆) with
∆ = −b/a

sbf(t) =







0 if t < ∆
a(t−∆) otherwise



Interpreting the Linear Approximation
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• t < ∆ ⇒ sbf(t) = 0: ∆ is the allocation delay for the
VM

• Worst-case delay between the VM becoming
active and the root scheduler scheduling it

• How much time should I wait before the root
scheduler starts giving the CPU to my VM?

• a (sometimes referred as α) is the bandwidth of the
VM

• Minimum fraction of CPU time reserved for the
VM after the initial delay

• Of course, (a,∆) should be so that a(t−∆) is below
the real sbf()



Periodic Servers Revisited
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• How to compute (a,∆) for a periodic server (Qs, T s)?

• a = Qs

T s , ∆ = 2(T s −Qs)

• So, after the initial delay 2(T s −Qs) the VM is really
receiving the expected fraction of CPU time (Qs/T s)

• If we reduce T s (keeping Qs/T s unchanged)...
• ...sbf(t) tends to the “fluid allocation”!

• Why not using very very small server periods?

• Of course there is a reason...



The Design Problem
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• Given a component (set of tasks and a local
scheduler)...

• Described by a time demand function (workload
for fixed priorities)

• ...Find a root scheduler (and scheduling parameters)
able to respect the components’ temporal
constraints

• Problem reduced to solving “sbf(t) ≥ dbf(t)” for a
set of points

• Must be verified for all the points in case of EDF
• Must be verified for at least one point in case of

fixed priorities



Simplified Design
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• sbf(t) ≥ dbf(t)
• Using sbf(t) = a(t−∆)...

a(t−∆) ≥ dbf(t) ⇒ ∆ ≤ t−
dbf(t)

a

• Solve this for every (t, dbf(t)), and plot the solution
on a a−∆ plane...

• ...Then compute the intersection (for EDF) or union
(for fixed priorities)
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