
Real-Time Compute

Virtualization

Luca Abeni

luca.abeni@santannapisa.it

January 13, 2022

Real-Time Applications

Virtualization Technologies Real-Time VMs

• Real-Time Application: The time when a result
is produced matters

• A correct result produced too late is equivalent to
a wrong result (or to no result)

• What does “too late” mean, here?

• Applications characterised by temporal
constraints that have to be respected!

• Examples:

• Control applications, autonomous driving, ...
• But also infotainment, gaming,

telecommunications, ...!!!

Temporal Constraints

Virtualization Technologies Real-Time VMs

• Temporal constraints are modelled through
deadlines

• Finish some activity before a time (deadline)
• Generate some data before a deadline
• Terminate some process/thread before a

deadline
• ...

• What happens if a constraint is not respected?

• Simple: the application fails!

Processes, Threads, and Tasks

Virtualization Technologies Real-Time VMs

• Algorithm → logical procedure used to solve a
problem

• Program → formal description of an algorithm, using
a programming language

• Process → instance of a program (program in
execution)

• Program: static entity
• Process: dynamic entity

• The term task is used to indicate a schedulable
entity (either a process or a thread)

• Thread → flow of execution
• Process → flow of execution + private resources

(address space, file table, etc...)

Real-Time Tasks

Virtualization Technologies Real-Time VMs

• A task can be seen as a sequence of actions . . .
• . . . and a deadline must be associated to each one

of them!

• Some kind of formal model is needed to identify
these “actions” and associate deadlines to them

Mathematical Model of a Task - 1

Virtualization Technologies Real-Time VMs

• Real-Time task τi: stream of jobs (or instances) Ji,k
• Each job Ji,k = (ri,k, ci,k, di,k):

• Arrives at time ri,k (activation time)
• Executes for a time ci,k
• Finishes at time fi,k
• Should finish within an absolute deadline di,k

ri,k
f i,k

di,k

ci,k

Mathematical Model of a Task - 2

Virtualization Technologies Real-Time VMs

• Job: abstraction used to associate deadlines
(temporal constraints) to activities

• ri,k: time when job Ji,k is activated (by an external
event, a timer, an explicit activation, etc...)

• ci,k: computation time needed by job Ji,k to
complete

• di,k: absolute time instant by which job Ji,k must
complete

• job Ji,k respects its deadline if fi,k ≤ di,k

• Response time of job Ji,k: ρi,k = fi,k − ri,k

RT Scheduling: Why?

Virtualization Technologies Real-Time VMs

• The task set T = {(1, 3), (4, 8)} is not schedulable by
FCFS

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

• T = {(1, 3), (4, 8)} is schedulable with other
algorithms

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

The Scheduling Problem

Virtualization Technologies Real-Time VMs

• A real-time task τi is properly served if all jobs
respect their deadline...

• ...Appropriate scheduling is important!

• The CPU scheduler must somehow know the
temporal constaints of the tasks...

• ...To schedule them so that such temporal
constraints are respected

• How to schedule real-time tasks? (scheduling
algorithm)

• Is it possible to respect all the deadlines?
• Do commonly used OSs provide appropriate

scheduling algorithms?

Fixed Priority Scheduling

Virtualization Technologies Real-Time VMs

• Very simple preemptive scheduling algorithm

• Every task τi is assigned a fixed priority pi
• The active task with the highest priority is

scheduled

• Priorities are integer numbers: the higher the
number, the higher the priority

• In the research literature, sometimes authors use
the opposite convention: the lowest the number,
the highest the priority

• In the following we show some examples,
considering periodic tasks, constant execution times,
and deadlines equal to the period

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Example of Schedule

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (2, 6, 6),
τ2 = (2, 9, 9), τ3 = (3, 12, 12). Task τ1 has priority
p1 = 3 (highest), task τ2 has priority p2 = 2, task τ3
has priority p3 = 1 (lowest)

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

Another Example (non-schedulable)

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!

Another Example (non-schedulable)

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!

Another Example (non-schedulable)

Virtualization Technologies Real-Time VMs

• Consider the following task set: τ1 = (3, 6, 6), p1 = 3,
τ2 = (2, 4, 8), p2 = 2, τ3 = (2, 12, 12), p3 = 1

0 2 4 6 8 10 12 14 16 18 20 22 24

τ1

τ2

τ3

In this case, task τ2 misses its deadline!

Notes about Priority Scheduling

Virtualization Technologies Real-Time VMs

• Some considerations about the schedule shown
before:

• The response time of the task with the highest
priority is minimum and equal to its WCET

• The response time of the other tasks depends on
the interference of the higher priority tasks

• The priority assignment may influence the
schedulability of a task set

• Problem: how to assign tasks’ priorities so
that a task set is schedulable?

What About Multiple Cores?

Virtualization Technologies Real-Time VMs

• How to schedule tasks on multiple CPUs / cores?

• First idea: partitioned scheduling

• Statically assign tasks to CPU cores
• Reduce the problem of scheduling on M cores to M

instances of uniprocessor scheduling

CPU CPU CPU CPU

M

Or...

Virtualization Technologies Real-Time VMs

• One single task queue, shared by M CPU cores

• The first M ready tasks are selected
• What happens using fixed priorities?
• Tasks are not bound to specific CPUs
• Tasks can often migrate between different CPUs

• Problem: UP schedulers do not work well!
M

CPU CPU CPU CPU

{M

Using Fixed Priorities in Linux

Virtualization Technologies Real-Time VMs

• SCHED FIFO and SCHED RR use fixed priorities

• They can be used for real-time tasks, to
implement RM and DM

• Real-time tasks have priority over non real-time
(SCHED OTHER) tasks

• The difference between the two policies is visible
when more tasks have the same priority

• In real-time applications, try to avoid multiple
tasks with the same priority

Setting the Scheduling Policy

Virtualization Technologies Real-Time VMs

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

int sched_setscheduler(pid_t pid, int policy,
const struct sched_param *param);

int sched_setparam(pid_t pid,
const struct sched_param *param);

• If pid == 0, then the parameters of the running
task are changed

• The only meaningful field of struct sched param

is sched priority

Problems with Real-Time Priorities

Virtualization Technologies Real-Time VMs

• In general, “regular” (SCHED OTHER) tasks are
scheduled in background respect to real-time ones

• Real-time tasks can / starve other applications
• Example: the following task scheduled at high

priority can make a CPU / core unusable
void bad_bad_task()
{

while(1);
}

• Real-time computation have to be limited (use
real-time priorities only when really needed!)

• Using real-time priorities requires root privileges
(or part of them!)

Real-Time Throttling

Virtualization Technologies Real-Time VMs

• A “bad” rt task can make a CPU / core unusable...
• ...Linux provides the real-time throttling mechanism

• How does real-time throttling interfere with
real-time guarantees?

• Given a priority assignment, a taskset is
guaranteed all the deadlines if no throttling
mechanism is used...

• ...But, what happens in case of throttling?

• Very useful idea, but something more “theoretically
founded” might be needed...

What About EDF?

Virtualization Technologies Real-Time VMs

• Can EDF (or similar) be supported in Linux?
• Problem: the kernel is not aware of tasks

deadlines...
• ...But deadlines are needed to schedule the tasks

• EDF schedules tasks based on absolute
deadlines

• So, a more advanced API is needed...

EDF on a real OS

Virtualization Technologies Real-Time VMs

• More advanced API:

• Assign relative deadlines Di to the tasks...
• A runtime and a period are also needed

• Moreover, di,j = ri,j +Di...

• ...However, how can the scheduler know ri,j?
• The scheduler is not aware of jobs...

• To use EDF, the scheduler must know when a job
starts / finishes

• Modify applications, or guess...

Tasks and Jobs... And Scheduling Deadlines!

Virtualization Technologies Real-Time VMs

• Applications must be modified to signal the
beginning / end of a job (some kind of startjob()
/ endjob() system call)...

• ...Or the scheduler can assume that a new job
arrives each time a task wakes up!

• Alternative:assign dynamic scheduling deadlines

• Scheduling deadline dsi : assigned by the kernel
• If the scheduling deadline dsi matches the

absolute deadline di,j of a job, then the scheduler
can respect di,j!!!

Real-Time in VMs???

Virtualization Technologies Real-Time VMs

• Running real-time applications on an RTOS is not a
problem...

• ...But, can real-time applications run in virtual
machines?

• Real-Time in Virtual Machines??? But... Why?

• Component-Based Development

• Complex applications: sets of smaller
components

• Both functional and temporal interfaces

• Security (isolate real-time applications in a VM)
• Easy deployment; Time-sensitive clouds

Real-Time in VMs

Virtualization Technologies Real-Time VMs

• Real-Time applications running in a VM?

• As for OSs, two different aspects

Real-Time in VMs

Virtualization Technologies Real-Time VMs

• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Resource allocation/management
(scheduling)

• CPU allocation/scheduling: lot of work in
literature

Real-Time in VMs

Virtualization Technologies Real-Time VMs

• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Latency (host and guest)

• Latencies not investigated too much (yet!)

Real-Time in VMs

Virtualization Technologies Real-Time VMs

• Real-Time applications running in a VM?

• As for OSs, two different aspects

• Resource allocation/management
(scheduling)

• Latency (host and guest)

• CPU allocation/scheduling: lot of work in
literature

• Latencies not investigated too much (yet!)

• Virtualization: full hw or OS-level

• OS-Level virtualization: real-time performance of
the host kernel

• Hw virtualization: hypervisors (example: KVM or
Xen) can introduce latencies!

Latency

Virtualization Technologies Real-Time VMs

• Latency: measure of the difference between the
theoretical and actual schedule

• Task τ expects to be scheduled at time t . . .
• . . . but is actually scheduled at time t′

• ⇒ Latency L = t′ − t

• The latency L can be accounted for in schedulability
analysis

• Similar to what is done for shared resources,
etc...

• Strange “shared resource”: the OS kernel (or the
hypervisor)

Example: Periodic Task

Virtualization Technologies Real-Time VMs

• Consider a periodic task
/* ... */
while(1) {
/* Job body */
clock_nanosleep(CLOCK_REALTIME,

TIMER_ABSTIME, &r, NULL);
timespec_add_us(&r, period);

}

• The task expects to be executed at time r

(= r0 + jT)...
• ...But is sometimes delayed to r0 + jT + δ

Theoretical Schedule

Virtualization Technologies Real-Time VMs

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

Actual Schedule

Virtualization Technologies Real-Time VMs

0 2 4 6 8 10 12 14 16 18 20 22

τ1

τ2

• What happens if the 2nd job of τ1 arrives a little bit
later???

• The 2nd job of τ2 misses a deadline!!!

Effects of the Latency

Virtualization Technologies Real-Time VMs

• Upper bound for L? If not known, no schedulability
analysis!!!

• The latency must be bounded: ∃Lmax : L < Lmax

• If Lmax is too high, only few task sets result to be
schedulable

• The worst-case latency Lmax cannot be too high

Sources of Latency — 1

Virtualization Technologies Real-Time VMs

• Task: stream of jobs (activations) arriving at time rj
• Task scheduled at time t′ > rj → Delay t′ − rj

caused by:

1. Job arrival (task activation) signaled at time
rj + L1

2. Event served at time rj + L1 + L2

3. Task actually scheduled at ri,j + L1 + L2 + I

L1 2 L3L

Sources of Latency — 2

Virtualization Technologies Real-Time VMs

• L = L1 + L2 + I
• I: interference from higher priority tasks

• Not really a latency!!!

• L2: non-preemptable section latency Lnp

• Due to non-preemptable sections in the kernel (or
hypervisor!) or to deferred interrupt processing

• L1: delayed interrupt generation

• Generally small
• Hardware (or virtualized) timer interrupt: timer

resolution latency Ltimer

Latency in Linux

Virtualization Technologies Real-Time VMs

• Tool (cyclictest) to measure the latency

• Periodic task scheduled at the highest priority
• Response time equal to execution time (almost 0)

• Vanilla kernel: depends on the configuration

• Can be tens of milliseconds

• Preempt-RT patchset
(https://wiki.linuxfoundation.org/realtime):
reduce latency to less than 100 microseconds

• Tens of microseconds on well-tuned systems!

• So, real-time on Linux is not an issue

• Is this valid for hypervisors/VMs too?

https://wiki.linuxfoundation.org/realtime

What About VM Latencies?

Virtualization Technologies Real-Time VMs

• Hypervisor: software component responsible for
executing multiple OSs on the same physical node

• Can introduce latencies too!

• Different kinds of hypervisors:

• Xen: bare-metal hypervisor (below the Linux
kernel)

• Common idea: the hypervisor is small/simple,
so it causes small latencies

• KVM: hosted hypervisor (Linux kernel module)

• Latencies reduced by using Preempt-RT
• Linux developers already did lot of work!!!

Hypervisor Latency

Virtualization Technologies Real-Time VMs

• Same strategy/tools used for measuring kernel
latency

• Idea: run cyclictest in a VM

• cyclictest process ran in the guest OS...
• ...instead of host OS

• cyclictest period: 50µs
• “Kernel stress” to trigger high latencies

• Non-real-time processes performing lot of
syscalls or triggering lots of interrupts

• Executed in the host OS (for KVM) or in Dom0
(for Xen)

• Experiments on multiple x86-based systems

Hypervisor Latencies

Virtualization Technologies Real-Time VMs

Intel Core Duo

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

kvm, RT host, RT guest
kvm, RT host, NRT guest
kvm, NRT host, RT guest

kvm, NRT host, NRT guest
Xen, RT Dom0, RT DomU

Xen, RT Dom0, NRT DomU
Xen, NRT Dom0, RT DomU

Xen, NRT Dom0, NRT DomU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

kvm, RT host, RT guest
kvm, RT host, NRT guest
kvm, NRT host, RT guest

kvm, NRT host, NRT guest
Xen, RT Dom0, RT DomU

Xen, RT Dom0, NRT DomU
Xen, NRT Dom0, RT DomU

Xen, NRT Dom0, NRT DomU

Intel Core i7

Worst Cases

Virtualization Technologies Real-Time VMs

Kernels Core Duo Core i7
Xen KVM Xen KVM

NRT/NRT 3216µs 851µs 785µs 275µs
NRT/RT 4152µs 463µs 1589µs 243µs
RT/NRT 3232µs 233µs 791µs 99µs
RT/RT 3956µs 71µs 1541µs 72µs

• Preempt-RT helps a lot with KVM

• Good worst-case values (less than 100µs)

• Preempt-RT in the guest is dangerous for Xen

• Worst-case values stay high

Hypervisor vs Kernel

Virtualization Technologies Real-Time VMs

KVM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

Host kernel latency
kvm latency

Xen

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

Dom0 latency (RT)
Dom0 latency (NRT)

Xen latency

• Worst Cases:

• Host: 29µs
• Dom0: 201µs with Preempt-RT, 630µs with NRT

Investigating Xen Latencies

Virtualization Technologies Real-Time VMs

• KVM: usable for real-time workloads
• Xen: strange results

• Larger latencies in general
• Using Preempt-RT in the guest increases the

latencies?

• Xen latencies are not due to the hypervisor’s
scheduler

• Repeating the experiments with the null
scheduler did not decrease the experienced
latencies

Impact of the Kernel Stress

Virtualization Technologies Real-Time VMs

• Experiments repeated without “Kernel Stress” on
Dom0

• This time, using Preempt-RT in the guest
reduces latencies!

• Strange result: Dom0 load should not affect the
guest latencies...

Kernels Core Duo Core i7
Stress No Stress Stress No Stress

NRT/NRT 3216µs 3179µs 785µs 1607µs
NRT/RT 4152µs 1083µs 1589µs 787µs
RT/NRT 3232µs 3359µs 791µs 1523µs
RT/RT 3956µs 960µs 1541µs 795µs

Virtualization Mechanisms

Virtualization Technologies Real-Time VMs

• Xen virtualization: PV, HVM, PVH, ...

• PV: everything is para-virtualized
• HVM: full hardware emulation (through qemu) for

devices (some para-virtualized devices, too); use
CPU virtualization extensions (Intel VT-x, etc...)

• PVH: hardware virtualization for the CPU +
para-virtualized devices (trade-off between the
two)

• Dom0 kernel does not affect results; focus on guest
kernel

Guest Kernel PV PVH HVM

NRT 661µs 1276µs 1187µs
RT 178µs 216µs 4470µs

What’s up with HVM?

Virtualization Technologies Real-Time VMs

• HVM uses qemu as Device Model (DM)

• Qemu instance running in Dom0
• Used for boot and emulating some devices...
• ...But somehow involved in the strange

latencies!!!

• Scheduling all qemu threads with priority 99, the
worst-case latencies are comparable with PV /
PVH!!!

• High HVM latencies due to the Kernel Stress
workload preempting qemu...

• Summing up: for good real-time performance, use
PV or PVH!

Cyclictest Period

Virtualization Technologies Real-Time VMs

• Most of the latencies larger than cyclictest period...
• Are hypervisor’s timers able to respect that period?

• Example of timer resolution latency...

• So, let’s try a larger period!

• 500µs and 1ms instead of 50µs
• Measure timer resolution latency → no kernel

stress

• Results are much better!

• P = 500µs: worst-case latency 112µs (HVM),
82µs (PVH) or 101µs (PV)

• P = 1000µs: worst-case latency 129µs (HVM),
124µs (PVH) or 113µs (PV)

Further Analysis

Virtualization Technologies Real-Time VMs

• Xen latencies seem to be mainly due to timer
resolution latency

• Turned out to be an issue in the Linux code
handling Xen’s para-virtualized timers

• Linux jargon: “clockevent device”

• Does not activate a timer at less than 100µs from
current time (TIMER SLOP)

• After reducing the timer slop, average latency
smaller than 50µs even for cyclictest with period 50µs

• Still larger than KVM latencies (probably due to
non-preemptable sections?)

Final Results

Virtualization Technologies Real-Time VMs

• Xen with a properly configured TIMER SLOP:

• Timer resolution latency reduced to almost 0
• Non-preemptable section latency dependent on

the virtualization technology
• Worst-case latencies higly dependent on the

hardware

• Example: some old CPUs need to (trap and)
emulate rdtsc ⇒ 15µs additional latency

• Xeon CPU: 28µs with PVH, 72µs for PV (KVM is
44µs)

• Core 2 CPU: 88µs for PV, 182µs for PVH (KVM is
71µs)

Reproducible Results

Virtualization Technologies Real-Time VMs

• Results can be reproduced on your test machine

• You just need some manual installation of KVM,
Xen, etc...

http://retis.santannapisa.it/luca/VMLatencies

• Scripts to reproduce the previous experiments

• Numbers depend on the hw, but the obtained
figures are consistent with the previous results

• Other figures can be easily obtained by modifying
scripts / configuration files

http://retis.santannapisa.it/luca/VMLatencies

Summing Up

Virtualization Technologies Real-Time VMs

• Latencies experienced in a VM (cyclictest)

• KVM: Preempt-RT allows to achieve low
latencies → usable for real-time

• Xen: high latencies, Preempt-RT does not help,
strange impact of the Dom0 load

• Xen behaves better when PV or PVH is used

• Part of the latencies due to the DM (qemu
running in Dom0)?

• Xen experiences a large timer resolution latency

• Fixable by modifying the guest kernel

Latencies and Scheduling

Virtualization Technologies Real-Time VMs

• Most of the industrial work on real-time virtualization
focused on latency reduction

• Example: real-time KVM industrial solution based
on vCPU pinning — No scheduling!!!

• Scheduling VMs is still needed to share hardware
resources...

• Bounded latencies are needed to have precise
and accurate vCPU scheduling...

• ...But appropriate scheduling algorithms are still
needed!!!

• Advanced scheduling algoritms are useless if
latencies are not bounded, and bounded latencies
are useless if appropriate scheduling is not used!

Combining Real-Time Guarantees

Virtualization Technologies Real-Time VMs

?
• Schedulability analysis in each VM...
• What about the resulting system?

Real-Time Applications Inside VMs

Virtualization Technologies Real-Time VMs

• VM Ci contains ni tasks
• How to analyze its schedulability?

• We only know how to schedule single tasks...
• And we need to somehow “summarise” the

requirements of a VM!

Ci = {(C i
0, D

i
0, T

i
0), (C

i
1, D

i
1, T

i
1), . . . , (C

i
ni, Di

ni, T i
ni)}

• So, 2 main issues:

1. Describe the temporal requirements of a VM in a
simple way

2. Schedule the VMs, and somehow “combine”
their temporal guarantees

The “not so smart” Solution

Virtualization Technologies Real-Time VMs

• Each VM is a set of real-time tasks:

Ci = {(C i
j, D

i
j, T

i
j)}

• Build the “global taskset” composed by all the tasks
from all the VMs

Γ =
⋃

i

Ci

• ...And use some known real-time scheduler (RM,
EDF, ...) on Γ!

Flattened Scheduling

Virtualization Technologies Real-Time VMs

• One single “flattened” scheduler seeing all the tasks

Why it is “not so smart”

Virtualization Technologies Real-Time VMs

• One single scheduler, that must “see” all the tasks of
all the VMs

• Internals of the VMs have to be exposed!
• VMs cannot run their own “local” schedulers
• Misbehaving tasks in a VM can affect other VMs

• No isolation!!!

• Using fixed priorities might be “not so simple”

• Think about RM: priorities in a VM might depend
on other VMs...

Practical Issues

Virtualization Technologies Real-Time VMs

• The host/hypervisor scheduler only sees a VMs, but
cannot see the tasks inside it

• Para-virtualization (of the OS scheduler) could be
used to address this issue, but it is not so simple...

• ...And requires huge modifications to host, guest,
and applications!

• So, how to schedule VMs?
• Two-level hierarchical scheduling system

• Host (global / root) scheduler, scheduling VMs
• Each VM contains its (local / 2nd level) scheduler

From a 1-Level Scheduler...

Virtualization Technologies Real-Time VMs

1τ
1τ

1ττn

τn

2

τn

τ

Scheduler

• Scheduler assigns CPU to tasks “inside the VMs”

...To a 2-Levels Hierarchy

Virtualization Technologies Real-Time VMs

1τ
1τ

1ττn

τn

Local Scheduler Local Scheduler Local Scheduler

2

τn

τ

Scheduler
Root

• Host Scheduler assigns CPU to VMs
• Local Schedulers assign CPU to single tasks

Hierarchical Scheduling

Virtualization Technologies Real-Time VMs

• The root scheduler does not see the tasks
• The OSs inside VMs are free to define their own

(fixed priorities, EDF, whatever) schedulers

• No problems in assigning fixed priorities to tasks!

• Root scheduler: host / hypervisor scheduler
• Local scheduler: guest scheduler
• Problem: what to use as a root scheduler?

• We must have a model for it
• Must allow to compose the “local guarantees”

• Before going on, summary of RT definitions and
concepts

Real-Time Guarantees in a Component

Virtualization Technologies Real-Time VMs

• First requirement: analyse the schedulability of a
component independently from other components

• This means that the root scheduler must provide
some kind of temporal protection between
components

• Various possibilities

• Resource Reservations / server-based approach
• Static time partitioning
• ...

• In any case, the root scheduler must
guarantee that each VM receives a
minimum amount of resources in a
time interval

Schedulability Analysis: the Basic Idea

Virtualization Technologies Real-Time VMs

• (Over?)Simplifying things a little bit...
• ...Suppose to know the amount of time needed by a

component to respect its temporal constraints and
the amount of time provided by the root scheduler

• A component is “schedulable” if

demanded time ≤ supplied time

• “demanded time”: amount of time (in a time
interval) needed by a component

• “supplied time”: amount of time (in a time
interval) given by the root scheduler to a
component

• Of course the devil is in the details

Demanded Time

Virtualization Technologies Real-Time VMs

• Amount of time needed by a component to respect
its temporal constraints

• Depends on the time interval we are considering
• Depends on the component’s local scheduler

• EDF → dbf(t) =
∑

j max{0,
⌊

t+Tj−Dj

Tj

⌋

}Cj

• RM: → workload W (t) = Ci +
∑

j<i

⌈

t
Ti

⌉

Cj

• Note: W (t) is very pessimistic, dbf(t) is not

• This is the description of the temporal requirements
of a component we were searching for...

• And what about the supplied time?

Supplied Time

Virtualization Technologies Real-Time VMs

• Description of the root scheduler temporal behaviour
• More formally:

• Depends on the time interval t we are
considering

• Depends on the root scheduler A

• Minimum amount of time given by A to a VM in a
time interval of size s

• Given all the time interval (t0, t1) : t1 − t0 = s...
• ...Compute the size of the sub-interval in which

σ(t) = VM ...
• ...And then find the minimum!

Supplied Time Bound Function

Virtualization Technologies Real-Time VMs

• Even more formally:

• Define s(t) =

1 if α(t) = VM
0 otherwise

• Time for VM in (t0, t0 + s):
∫ t0+s
t0 s(t)dt

• Then, compute the minimum over t0

• sbf(t) = mint0
∫ t0+t
t0 s(x)dx

Example: Static Time Partitioning

Virtualization Technologies Real-Time VMs

• First (very simple) example of VM scheduling: static
time partitioning

• Static schedule describing when time is assigned
to each VM

• Pre-computed σ(t)

• Generally, periodic!

• Otherwise, need to store an infinite schedule...
• ...Might be problematic!

• Example: VMA is scheduled in (3, 4), (9, 10), (15, 16),
...

• More formally: s(t) = 1 if 6k + 3 ≤ t ≤ 6k + 4,
s(t) = 0 otherwise

Example: Static Time Partitioning - 2

Virtualization Technologies Real-Time VMs

s(t) =

1 if 6k + 3 ≤ t ≤ 6k + 4
0 otherwise

• What is the supply bound function sbf(t) in this
case?

• Let’s try different supply functions compatibe with
this schedule...

• ...And see what is the worst case!

• Intervals of size t starting at different times...

Example: Static Time Partitioning - 3

Virtualization Technologies Real-Time VMs

• Different supply functions depending on when the
considered interval begins

• Which one is the worst case (supply bound
function)?

Example: Static Time Partitioning - 4

Virtualization Technologies Real-Time VMs

• Different supply functions depending on when the
considered interval begins

• Which one is the worst case (supply bound
function)?

• The red one!

Example: Static Time Partitioning - 5

Virtualization Technologies Real-Time VMs

Periodic Servers

Virtualization Technologies Real-Time VMs

• Periodic Server S = (Q,P): guarantees Q units of
time every period P

• Can be implemented in different ways (example:
CBS)

• Different from static allocation: we do not know
where in the period the Q time units are allocated

• Execution inside a period can even be
preempted!

Periodic Servers — Supplied Time

Virtualization Technologies Real-Time VMs

• sbf(t): minimum amount of time that a VM is
guaranteed to receive in a time interval of size t

• Consider all the possible intervals of size t...

• As already seen for static time partitioning

• ...And all the possible “legal CPU allocations”
generated by the periodic server!

• Big difference with static time partitioning: consider
all the possible allocations of Q in the period

The Wrong Solution

Virtualization Technologies Real-Time VMs

• Immagine Q is allocated at the beginning of the
period

• Worst case allocation: t0 immediately after Q
• The time interval starts when the root scheduler

deschedules the component

Q

P PPP P

P − Q P − Q

P − Q Q P−Q

P − Q 2P − QP 2P

The Wrong Solution — 2

Virtualization Technologies Real-Time VMs

• Supplied time: 0 until P −Q...
• ...Then increases with slope 1 until P ...
• ...Then flat again until 2P −Q...
• ...

sbf(t) =

0 if t < (P −Q)
(n− 1)Q if (n− 1)P ≤ t < nP −Q
t+ nQ− (n− 1)P if nP −Q ≤ t < nP

Why Wrong?

Virtualization Technologies Real-Time VMs

• The previous computation assumed Q always at the
beginning of a period...

• ...But this is not the worst case!

• Think about the second period...
• ...What happens if the root scheduler delays the

allocation?
• The initial “0 allocation period” increases!!!

• Worst-case schedule: Q at the beginning of the first
period and at the end of the second one

• See the difference with static time partitioning?

Considering the Worst-Case Situation

Virtualization Technologies Real-Time VMs

P

Q 2(P − Q)

P P

P − Q

P−QQ2(P−Q)

3P−Q3P−2Q2(P−Q) 2P−Q 4P−2Q 4P−Q

sbf(t) =

0 if t < 2(P −Q)
(n− 1)Q if nP −Q ≤ t < (n+ 1)P − 2Q
t− (n+ 1)(P −Q) if (n+ 1)P − 2Q ≤ t < (n+ 1)P −Q

Understanding the Supplied Bound Function

Virtualization Technologies Real-Time VMs

• Supplied bound function sbf(t): minimum amount of
time that a VM is guaranteed to receive in a time
interval of size t

• Considers all the possible intervals of size t...

• Strange looking function!

• Flat for large intervals of time...

• δsbf(t)
δt

= 1 in the other intervals

• Can we “summarise” it with something simpler?
• What about a line (y = ax+ b)?

• sbf(t) < 0 makes no sense...
• So, better sbf(t) = max{0, at+ b}

A Linear Approximation

Virtualization Technologies Real-Time VMs

• sbf(t) = max{0, at+ b}... at+ b is below 0 for
t < −b/a

• Let’s rewrite the equation... at+ b = a(t−∆) with
∆ = −b/a

sbf(t) =

0 if t < ∆
a(t−∆) otherwise

Interpreting the Linear Approximation

Virtualization Technologies Real-Time VMs

• t < ∆ ⇒ sbf(t) = 0: ∆ is the allocation delay for the
VM

• Worst-case delay between the VM becoming
active and the root scheduler scheduling it

• How much time should I wait before the root
scheduler starts giving the CPU to my VM?

• a (sometimes referred as α) is the bandwidth of the
VM

• Minimum fraction of CPU time reserved for the
VM after the initial delay

• Of course, (a,∆) should be so that a(t−∆) is below
the real sbf()

Periodic Servers Revisited

Virtualization Technologies Real-Time VMs

• How to compute (a,∆) for a periodic server (Qs, T s)?

• a = Qs

T s , ∆ = 2(T s −Qs)

• So, after the initial delay 2(T s −Qs) the VM is really
receiving the expected fraction of CPU time (Qs/T s)

• If we reduce T s (keeping Qs/T s unchanged)...
• ...sbf(t) tends to the “fluid allocation”!

• Why not using very very small server periods?

• Of course there is a reason...

The Design Problem

Virtualization Technologies Real-Time VMs

• Given a component (set of tasks and a local
scheduler)...

• Described by a time demand function (workload
for fixed priorities)

• ...Find a root scheduler (and scheduling parameters)
able to respect the components’ temporal
constraints

• Problem reduced to solving “sbf(t) ≥ dbf(t)” for a
set of points

• Must be verified for all the points in case of EDF
• Must be verified for at least one point in case of

fixed priorities

Simplified Design

Virtualization Technologies Real-Time VMs

• sbf(t) ≥ dbf(t)
• Using sbf(t) = a(t−∆)...

a(t−∆) ≥ dbf(t) ⇒ ∆ ≤ t−
dbf(t)

a

• Solve this for every (t, dbf(t)), and plot the solution
on a a−∆ plane...

• ...Then compute the intersection (for EDF) or union
(for fixed priorities)

	Real-Time Applications
	Temporal Constraints
	Processes, Threads, and Tasks
	Real-Time Tasks
	Mathematical Model of a Task - 1
	Mathematical Model of a Task - 2
	RT Scheduling: Why?
	The Scheduling Problem
	Fixed Priority Scheduling
	Example of Schedule
	Another Example (non-schedulable)
	Notes about Priority Scheduling
	What About Multiple Cores?
	Or...
	Using Fixed Priorities in Linux
	Setting the Scheduling Policy
	Problems with Real-Time Priorities
	Real-Time Throttling
	What About EDF?
	EDF on a real OS
	Tasks and Jobs... And Scheduling Deadlines!
	Real-Time in VMs???
	Real-Time in VMs
	Latency
	Example: Periodic Task
	Theoretical Schedule
	Actual Schedule
	Effects of the Latency
	Sources of Latency — 1
	Sources of Latency — 2
	Latency in Linux
	What About VM Latencies?
	Hypervisor Latency
	Hypervisor Latencies
	Worst Cases
	Hypervisor vs Kernel
	Investigating Xen Latencies
	Impact of the Kernel Stress
	Virtualization Mechanisms
	What's up with HVM?
	Cyclictest Period
	Further Analysis
	Final Results
	Reproducible Results
	Summing Up
	Latencies and Scheduling
	Combining Real-Time Guarantees
	Real-Time Applications Inside VMs
	The ``not so smart'' Solution
	Flattened Scheduling
	Why it is ``not so smart''
	Practical Issues
	From a 1-Level Scheduler...
	...To a 2-Levels Hierarchy
	Hierarchical Scheduling
	Real-Time Guarantees in a Component
	Schedulability Analysis: the Basic Idea
	Demanded Time
	Supplied Time
	Supplied Time Bound Function
	Example: Static Time Partitioning
	Example: Static Time Partitioning - 2
	Example: Static Time Partitioning - 3
	Example: Static Time Partitioning - 4
	Example: Static Time Partitioning - 5
	Periodic Servers
	Periodic Servers — Supplied Time
	The Wrong Solution
	The Wrong Solution — 2
	Why Wrong?
	Considering the Worst-Case Situation
	Understanding the Supplied Bound Function
	A Linear Approximation
	Interpreting the Linear Approximation
	Periodic Servers Revisited
	The Design Problem
	Simplified Design

