
Introduction to the Course

Luca Abeni

luca.abeni@santannapisa.it

November 17, 2021



Why this Course?

Virtualization Technologies Introduction

• Today, virtualization is very used in computing
systems

• From “low-power” devices (traditionally
considered as embedded)...

• ...To big clouds!

• Used for various reasons:

• Security / safety
• Running multiple OSs on the same machine
• Server consolidation
• “On-demand” allocation of computing resources

• Lots of very different technologies...



Virtualization?

Virtualization Technologies Introduction

• “Virtualization” is often used as a generic term, to
indicate lots of different things

• Different kinds of requirements and features...
• ...Different levels of performance, security,

flexibility

• People sometimes consider virtualization solutions
and VMs as “black boxes”

• Without caring about the used mechanisms or
implementation details

• As a result, it becomes difficult to exactly understand
the security and performance implications

• Need for better understanding of the various
virtualization technologies and soltions!



Overview — 1

Virtualization Technologies Introduction

• Introduction to virtualization
• Various levels of virtualization

• Hardware virtualization
• OS-level virtualization

• Containers

• language-level virtualization, ...

• Virtualizing computing and non-computing resources

• CPU virtualization

• Emulation
• Trap and emulate
• Hardware-assisted virtualization

• I/O devices virtualization, ...



Overview — 2

Virtualization Technologies Introduction

• Virtual abstractions

• VMs vs containers
• Containers as an abstraction (as opposite to

containers as a technology)

• Virtualization architectures
• Real-Time virtualization

• Latencies
• Hierarchical scheduling

• Modern technologies

• Lightweight VMs / MicroVMs
• Unikernels, specialized/reduced monitors



Virtualization

Virtualization Technologies Introduction

• Virtualization: creation of a virtual instance of a
computing system

• Computer (PC, server, embedded board, ...)
• Operating System
• Storage device / other

• Separate / independent from the physical system(s)
hosting it

• This mainly requires two activities:

1. Pooling: consolidating possibly distributed
resources into a single logical entity

2. Isolation: creating the impression that the
virtualized application has a private copy of the
resources



Resource Pooling

Virtualization Technologies Introduction

• Set of multiple, possibly distributed, resources
• Single “virtual resource”, that can be used to

transparently access them

• Pool of physical servers hosting VMs in a cloud;
accessed by starting a VM⇐ load balancing

• Pool of storage devices (disks, databases, ...)
accessed as a single virtual storage device← I
do not know where data are really stored...

• ...

• Used for automatically distributing the load, for
building powerful machines based on less powerful
ones, for making computation independent on data
placement, ...



Resource Isolation

Virtualization Technologies Introduction

• The usage of virtual resources must be controlled by
the virtualization software

• Example: applications running in a VM should not
be able to access resources outside of the VM...

• ...Nor to directly access physical resources!
• Or: applications using a virtual storage device

should not be able to even see the physical
storage devices

• ...

• Virtual resources should not even be distinguishible
from physical ones

• Example: applications running in a VM should
have the impression to run on a physical
machine...



Different Kinds of Isolation...

Virtualization Technologies Introduction

• Resource isolation can be used for different reasons

• Security← reduce the impact of compromised
subsystems

• Application sandboxing← execute non-trusted
software

• Performance guarantees← isolate the
performance of a component from interference of
other components

• ...

• Different kinds of requirements



...And Different Kinds of Virtualization

Virtualization Technologies Introduction

• Example: Compute virtualization← virtualization of
a computing element

• Different kinds of abstractions, ranging from Virtual
Machine (virtual instance of a PC) to “virtual
language runtime”

• Abstraction: virtual PC→ probably strongest
type of isolation, but some overhead

• Abstraction: JVM→ much less isolation (but the
virtualization overhead can be reduced)

• Common concept: Abstract Machine... Let’s look at it

• Starting from the very beginning: physical
machine



Example of (Toy) CPU

Virtualization Technologies Introduction

Registers
ALU

Control
Unit

Bus
DRAR

PC, IR,...

• Toy CPU: just an example with many simplifications
• Modern (real) CPUs are much more complex!

• Pipeline
• Parallel execution
• ...



CPUs, Programs, & Friends

Virtualization Technologies Introduction

• CPU→ executes programs

• Stored in main memory
• Use data from main memory

• Program: formal description of an algorithm

• Using a programming language

• Sequence of machine instructions

• Actions having effects on some objects
• “Object”: data stored in main memory

• Instance of program in execution: sequence of
actions on objects

• Example: int mcd(int a, int b) and its
execution



Executing a Program

Virtualization Technologies Introduction

Fetch

Save Data

Execute

Load Data

Decode

• CPU: cyclical execution (fetch /
decode / load / execute / save)

• Machine instructions are exe-
cuted (mainly) sequentially

• Machine designed to execute its
own language!

• Machine Language



Physical Machines...

Virtualization Technologies Introduction

• Computer: (physical) machine designed to execute
programs

• Every machine executes programs written in its own
language

• Relationship between machine and language

• A machine has its own language (the language it
can parse and execute)

• A language can be “understood” (parsed and
executed) by multiple different machines

• Program execution: (infinite) cycle
fetch/decode/load/execute/save

• CPU: hw implementation of this cycle



...And Abstract Machines!

Virtualization Technologies Introduction

• The fetch/decode/load/execute/save cycle can be
implemented in hw or in sw...

• Software Implementation: Abstract Machine

• Algoritmhms and data structures used to store
and execute programs

• Once upon a time referred as “Virtual Machine”

• Today, the term “Virtual Machine” (VM) is used
with a slightly different meaning



Abstract Machines and Languages

Virtualization Technologies Introduction

• Similarly to physical machines (CPUs), each
abstract machine has its own machine language

• Machine language for a CPU: sequence of 0 / 1

• Assembly makes it more readable

• Abstract machines generally have higher level
machine languages (C, Java, etc...)

• ML: abstract machine understanding language L

• L is the machine language ofML

• Program: sequence of instructions written in L

• ML is just a possibile way to describe L



Abstract Machines Behaviour

Virtualization Technologies Introduction

• To execute a program written in L,ML has to:

1. Execute some “elementary operations”

• In hw, ALU

2. Manage the execution flow

• Execution is not only sequential (jumps,
loops, etc...)

• In hw, PC handling

3. Move data from / to memory

• Addressing modes, ...

4. Take care of memory management

• Dynamic allocation, stack management,
etc...



Abstract Machine Example

Virtualization Technologies Introduction

Fetch

Load Data

Decode

Save Data

HaltOp 1 Op 2 Op n

Start

Stop

• Execution cycle: very
similar to a CPU...

• ... But it is imple-
mented in software!



Virtualized Resources

Virtualization Technologies Introduction

• Virtual Machine: efficient, isolated duplicate of a
physical machine

• Why focusing on physical machines?
• What about abstract machines?

• Software stack: hierarchy of abstract machines

• ...
• Abstract machine: language runtime
• Abstract machine: OS (hardware + system library

calls)
• Abstract machine: OS kernel (hardware +

syscalls)
• Physical machine (hardware)



Hardware Virtualization

Virtualization Technologies Introduction

• Can be full hardware virtualization or
paravirtualization

• Paravirtualization requires modifications to guest
OS (kernel)

• Can be based on trap and emulate
• Can use special CPU features (hardware assisted

virtualization)
• In any case, the hardware (whole machine) is

virtualized!

• Guests can provide their own OS kernel
• Guests can execute at various privilege levels



OS-Level Virtualization

Virtualization Technologies Introduction

• The OS kernel (or the whole OS) is virtualized

• Guests can provide the user-space part of the
OS (system libraries + binaries, boot scripts, ...)
or just an application...

• ...But continue to use the host OS kernel!

• One single OS kernel (the host kernel) in the system

• The kernel virtualizes all (or part) of its services

• OS kernel virtualization: container-based
virtualization

• Example of OS virtualization: wine



Virtualization at Language Level

Virtualization Technologies Introduction

• The language runtime is virtualized

• Often used to achieve independence from
hardware architecture

• Example: Java Virtual Machine
• Often implemented by using emulation techniques

• Interpreter or just-in-time compiler



Hardware Virtualization

Virtualization Technologies Introduction

• Virtual Machine: efficient, isolated duplicate of a
physical machine

• Execution environment essentially identical to the
physical machine

• Programs only see a small decrease in speed
• A “monitor” or “hypervisor” is in full control of

physical resources

• Programs running in a VM should not see
differences respect to real hw

• Virtualization should be efficient
• Programs should not be able to access resources

outside of the VM



VMs and OSs

Virtualization Technologies Introduction

• How is an OS related to Virtual Machines?

• The OS should provide support for the Virtual
Machine Monitor / hypervisor

• The OS could be optimized to run inside a VM

• OS suport for virtualization (as host or as guest)

• Impact on resource management
• Impact on the exposed features
• Impact on the I/O devices support

• Impact on the OS architecture?

• Host: type-I hypervisors, µ-kernel systems
• Guest: library OSs, unikernels, vertically

structured OSs



CPU Virtualization

Virtualization Technologies Introduction

• First idea: simulate the CPU hw in software

• Software implementation of an abstract machine
implementing the fetch-decode-execute-(write)
cycle

• Fails the efficency requirement!!!

• Other idea: directly execute the virtualized
instructions on the CPU

• Virtual ISA: exact copy of the host ISA
• Might fail the third (VMM is in control)

requirement
• Limited to unprivileged instructions (with VMM

executing at a high privilege level)
• What to do for privileged instructions?



Virtualizable CPU Architectures

Virtualization Technologies Introduction

• The monitor should be able to “intercept” some
machine instructions

• Some kind of trap / exception / software interrupt
must be generated

• Not always possible (think about x86 ring 0)

• The CPU must provide some support for full
virtualization

• “More than supervisor” mode→ hypervisor mode

• Introduce two operating modes: “root mode” and
“non-root mode”; non-root mode can only modify
a shadow copy of the CPU privileged state

• ...



OSs for Virtualizable Architectures

Virtualization Technologies Introduction

• Virtualizable ISA: how to use it?

• VMM or hypervisor responsible for managing
VMs and other resources

• Re-invent an OS, or using an existing one?

• OS support for hypervisors

• Hosted hypervisor
• Dom0
• ...

• Difference between a hypervisor and a µ-kernel???

• Are we reinventing an old idea?
• ...And, what are µ-kernels, after all???



ParaVirtualization

Virtualization Technologies Introduction

• So, CPU virtualization can be easy and efficient

• Provided that the ISA is virtualizable
• Provided host OS support / hypervisor

• What about I/O devices?

• Virtualizing real hardware can be complex and
inefficient

• Idea: device passthrough
• Other possibility: paravirtulization

• Paravirtualization: the guest knows that it is running
in a VM

• Memory buffers can be (securely) shared
between guest and host

• ...



Different Kinds of VMMs/Hypervisors

Virtualization Technologies Introduction

• Software implementation ofML (hardware
machine): executes on a Host MachineMhLh

• MhLh is of course an abstract machine...

• Is it the hardware machine?
• Is it a higher-level abstract machine

(implemented by kernel, OS, ...)?

• In other words: where does the hypervisor run?

• Does it run directly on the hardware?
• Does it run on an OS kernel?
• Does it uses other services provided by a host

OS?



Bare Metal Hypervisors

Virtualization Technologies Introduction

• The host machineMhLh is the hardware machine,
without extensions

• The hypervisor directly accesses the hardware
• Loaded by some kind of bootloader, controls the

execution of guest kernels/OSs
• No functionalities provided by a “host kernel”

• Examples: Xen, but also Jailhouse (funny detail:
Linux is the bootloader!)

• How to access the physical devices?

• Must implement device drivers...
• ...Or rely on a “special” guest OS that provides

the drivers
• Generally uses pass-through techniques



Hosted Hypervisors

Virtualization Technologies Introduction

• The host machine is the hardware machine + a host
kernel (or even a host OS!)

• The hypervisor can rely on functionalities
provided by the host kernel

• No need to re-implement memory management,
drivers, CPU scheduler, ...

• Examples: KVM, VirtualBox, ...
• The hypervisor can be started only after the guest

OS is booted

• There generally is a kernel-level hypervisor + a
user-level management tool (sometimes named
VMM)



OS-Level Virtual Machines

Virtualization Technologies Introduction

• Virtual Machine: efficient, isolated duplicate of an
operating system (or operating system kernel)

• Do not virtualise the whole hardware

• Only OS services are virtualised
• Host kernel: virtualise its services to provide

isolation among guests

• Container: isolated execution environment to
encapsulate one or more processes/tasks

• Sort of “chroot on steroids”

• Two aspects: resource control (scheduling) and
visibility



More on “Containers”

Virtualization Technologies Introduction

• Container: resource control and visibility

• Control how many resources a VM is using
• Make sure that virtual resources of a VM are not

visible in other VMs

• “Resource Containers: A New Facility for Resource
Management in Server Systems” (Banga et al, 1999)

• Operating system abstraction containing all the
resources used by an application to achieve a
particular independent activity

• Today, “container” == execution environment

• Used to run a whole OS→ VM (with OS-level
virtualization)

• Used to run a single application / micro-service



Linux Containers

Virtualization Technologies Introduction

• The Linux kernel does not directly provide the
“container” abstraction

• Containers can be built based on lower-level
mechanisms: control groups (cgroups) and
namespaces

• namespaces: isolate and virtualise system
resources

• cgroups: limit, control, or monitor resources used
by groups of tasks

• Namespaces are concerned with resources’ visibility,
cgroups are concerned with scheduling



Linux Namespaces

Virtualization Technologies Introduction

• Used to isolate and virtualise system resources

• Processes executing in a namespace have the
illusion to use a dedicated copy of the
namespace resources

• Processes in a namespace cannot use (or even
see) resources outside of the namespace

• Processes in a network namespace only see
network interfaces that are assigned to the
namespace

• Same for routing table, etc...

• Processes in a PID namespace only see processes
from the same namespace

• PIDs can be“private to the namespace”



Linux Control Groups

Virtualization Technologies Introduction

• Used to restrict (limit, control) or monitor the amount
of resources used by “groups of processes”

• Processes can be organized in groups, to control
their accesses to resources

• Example: CPU control groups for scheduling

• Limit the amount of CPU time that processes can
use, etc...

• Similar cgroups for other resources

• memory, IO, pids, network, ...



Building a Container

Virtualization Technologies Introduction

• Namespaces and control group give fine-grained
control on processes and resources

• Per-resource control groups and/or namespaces
• Lower level abstractions respect to other OSs (for

example, FreeBSD jails)

• More powerful than other mechanisms, but more
difficult to use

• To build a container, it is necessary to:

• Setup all the needed namespaces and control
groups

• Create a “disk image” for the container (directory
containing the container’s fs)



Running in a Container

Virtualization Technologies Introduction

• Chroot to the container fs

• Must contain the whole OS, or the libraries/files
needed to execute the program to containerize

• Start init, or the program to containerize

• Thanks to the PID namespace, it will have PID 1
in the container!

• Note: init can mount procfs or other
pseudo-filesystems

• Namespaces allow to control the information
exported in those pseudofilesystems!



Example: Networking in Containers

Virtualization Technologies Introduction

• Thanks to the network namespace, processes
running in a container do not see the host’s network
interfaces

• How to do networking, then?

• Create a virtual ethernet pair

• Two virtual ethernet interfaces, connected
point-to-point

• Packets sent on one interface are received on the
other, and vice-versa

• Associate one of the two virtual ethernet interfaces
to the network namespace of the container

• Bind the other one to a software bridge



Virtual Operating Systems

Virtualization Technologies Introduction

• Instead of virtualizing kernel services, it is possible
to virtualize the whole OS!

• With containers, software implementation of an
abstract macineML corresponding to the OS
kernel (understanding machine language +
system calls)

• Possible to implement an abstract machineML

understanding machine language + standard OS
runtime (libc, ...)

• Possible to execute (for example) Windows
applications on Linux (or vice-versa!)

• How can this be implemented in practice?
• Re-implement the system libraries...



The Kernel

Virtualization Technologies Introduction

• Kernel→ OS component interacting with hardware

• Runs in privileged mode (Kernel Space→ KS)
• User Level⇔ Kernel Level switch through special

CPU instructions (INT, TRAP, ...)
• User Level invokes system calls or IPCs

• Kernel Responsibilities

• Process management
• Memory management
• Device management
• System Calls

Level
User

Hardware

Level
Kernel

Applications

memory devicesCPU

Kernel



System Libraries

Virtualization Technologies Introduction

• Applications generally don’t invoke system calls
directly

• They generally use system libraries (like glibc),
which

• Provide a more advanced user interface
(example: fopen() vs open())

• Hide the US⇔ KS switches
• Provide some kind of stable ABI (application

binary interface)



Static vs Shared Libraries - 1

Virtualization Technologies Introduction

• Libraries can be static or dynamic

• <libname>.a vs <libname>.so

• Static libraries (.a)

• Collections of object files (.o)
• Application linked to a static library⇒ the needed

objects are included into the executable
• Only needed to compile the application



Static vs Shared Libraries - 2

Virtualization Technologies Introduction

• Dynamic libraries (.so, shared objects)

• Are not included in the executable
• Application linked to a dynamic library⇒ only the

library symbols names are written in the
executable

• Actual linking is performed at loading time
• .so files are needed to execute the application

• Linking static libraries produces larger executables...

• ...But these executables are “self contained”



OS ABI Virtualization

Virtualization Technologies Introduction

• A modified executable loader load some “special”
system libraries instead of the standard ones

• On Windows, when loading an ELF Linux
executable dynamically link a “libc.so”
implementing the Linux ABI on the windows
kernel

• On Linux, when loading a PE Windows
executable dynamically link some special
“win32.dll”/“win64.dll” implementing the Windows
ABI on Linux

• ...

• Of course, the devil is in the details (look at Wine!)
• What to do for statically linked applications /

applications directly invoking syscalls?


	Why this Course?
	Virtualization?
	Overview — 1
	Overview — 2
	Virtualization
	Resource Pooling
	Resource Isolation
	Different Kinds of Isolation...
	...And Different Kinds of Virtualization
	Example of (Toy) CPU
	CPUs, Programs, & Friends
	Executing a Program
	Physical Machines...
	...And Abstract Machines!
	Abstract Machines and Languages
	Abstract Machines Behaviour
	Abstract Machine Example
	Virtualized Resources
	Hardware Virtualization
	OS-Level Virtualization
	Virtualization at Language Level
	Hardware Virtualization
	VMs and OSs
	CPU Virtualization
	Virtualizable CPU Architectures
	OSs for Virtualizable Architectures
	ParaVirtualization
	Different Kinds of VMMs/Hypervisors
	Bare Metal Hypervisors
	Hosted Hypervisors
	OS-Level Virtual Machines
	More on ``Containers''
	Linux Containers
	Linux Namespaces
	Linux Control Groups
	Building a Container
	Running in a Container
	Example: Networking in Containers
	Virtual Operating Systems
	The Kernel
	System Libraries
	Static vs Shared Libraries - 1
	Static vs Shared Libraries - 2
	OS ABI Virtualization

