
PAC-PL: Enabling Control-Flow Integrity with
Pointer Authentication in FPGA SoC Platforms

Gabriele Serra∗, Pietro Fara∗, Giorgiomaria Cicero∗, Francesco Restuccia†, and Alessandro Biondi∗
∗Scuola Superiore Sant’Anna, Pisa, Italy
†University of California, San Diego, USA

Abstract—Control-flow integrity (CFI) is an effective tech-
nique to enhance the security of software systems. Processor
designers recently started to provide hardware-based support to
efficiently implement CFI, such as the pointer authentication (PA)
feature provided by ARM starting from ARMv8.3-A processor
architectures. These CFI mechanisms are also accompanied by
support in the mainline codebase of popular compilers (such
as GCC and LLVM) and the Linux operating system. As
such, they are expected to establish as widespread security
mechanisms. Nevertheless, many commercial chips still do not
support hardware-assisted CFI, even some of the ones that just
entered the market. This paper presents PAC-PL, a solution to
enable hardware-assisted CFI on heterogeneous platforms that
include a field-programmable gate array (FPGA) fabric, such as
the Xilinx Ultrascale+ and Versal. PAC-PL comes with compiler-
and OS-level support, is compatible with ARM’s PA, and enables
advanced key management and attack detection strategies. A
timing analysis for PAC-PL is also presented. PAC-PL was ex-
perimentally evaluated with state-of-the-art benchmarks in terms
of run-time overhead, memory footprint, and FPGA resource
consumption, resulting in a practical solution for implementing
CFI.

I. INTRODUCTION

Security is a prominent requirement for modern software
systems. The complexity of today’s software, the integration
of software components of disparate kinds, and the exposure to
networks left room for several vulnerabilities in many software
systems that, when properly exploited, were unfortunately
used to accomplish malicious actions and cyber-crimes. De-
signers of embedded systems are required to pay particular
attention to security for at least two major reasons. First,
being embedded software typically used to control a physical
system, attackers that take unauthorized control of the software
can produce severe damages in the real world, e.g., think of
passenger cars with automated driving capabilities that get
hacked. Second, being embedded systems built with resource-
constrained computing platforms, efficiency is almost always
a must in the design and development of software. For this
reason, languages such as C and C++ are the most used to
develop embedded software due to their excellent balance
between performance and programmability. As a matter of
fact, for several embedded platforms, they are the only lan-
guages supported by the toolchain provided by the hardware
vendor. Nevertheless, C and C++ are known to be memory-
unsafe languages, thus exposing the system to a series of
attacks [1] in the presence of vulnerabilities, named memory

corruption, which are commonly inadvertently left in the code
by programmers and are hard to detect at testing time.

Memory corruption vulnerabilities can be exploited to hi-
jack the canonical execution flow of software processes by
overriding part of their data in memory, such as pointers
pushed into the stack. Code-reuse attacks (CRA) [2] are a
modern example of attacks taking advantage of these vulnera-
bilities. CRA aim at manipulating the execution of a program
modifying the control flow of a process by combining proces-
sor instructions already present in a system. Historically, CRA
date back to 1997, when Peslyak [3] proposed the famous
return-to-libc. Since 1997, researchers have been committed
to contrast CRA by devising defense techniques.

Among the various techniques developed over the years
to contrast CRA, one of the most effective is control-flow
integrity (CFI). CFI aims to ensure that a process’s exe-
cution flow always corresponds to the legal one specified
at compile time. CFI is undoubtedly a powerful technique
but is still scarcely applicable in practical scenarios, mainly
due to the large overhead it requires to be implemented to
ensure a complete CFI enforcement in any possible execution
scenario. To make some CFI techniques implementable in
practical applications, processor designers have started to
offer hardware support. The leading example of this kind
is the pointer authentication (PA) [4], [5] feature introduced
by ARM in their ARMv8.3-A processor architectures. Intel
also proposed a similar architectural extension called Control-
flow Enforcement Technology (CET). Both these mechanisms
are transparent to the programmer and are supported at the
compiler and OS levels. For instance, the GCC and LLVM
compilers and the Linux OS already support ARM’s PA. Due
to their availability in popular processors adopted in a huge
number of systems and the corresponding compiler- and OS-
level support, these CFI mechanisms are expected to establish
as reference solutions for enhancing the security of software
systems.

Nevertheless, to date, the number of system-on-chips (SoC)
natively offering hardware-assisted CFI mechanisms is still
very low. For instance, the widespread Xilinx Ultrascale+ SoC
and even the newest Xilinx Versal, which has still to enter
full production, do not offer the ARM’s PA feature. Given
that these SoC are going to stay on the market for a long
time and have already ended (or will end) up in being used
in many embedded systems, it is definitively essential to seek
for solutions to efficiently enable CFI with these platforms.



Contribution. This paper presents PAC-PL, a solution that
leverages the field-programmable gate array (FPGA) tech-
nology to efficiently enable CFI in FPGA-based SoC such
as Xilinx Ultrascale+ and Versal. PAC-PL is compatible with
ARM’s PA, comes with its own compiler- and OS-level sup-
port for GCC and Linux, and can largely reuse the support for
ARM’s PA in Linux. Furthermore, PAC-PL enables improved
key management and attack detection strategies with respect
to ARM’s PA. A timing analysis for PAC-PL is also proposed.
PAC-PL is finally evaluated with state-of-the-art benchmarks
in terms of run-time overhead, memory footprint, and FPGA
resource consumption.
Paper structure. The rest of the paper is organized as
follows. Section II provides background information on CFI
and ARM’s PA. Section III defines the problem addressed in
this work. Section IV discusses the design and implementation
of PAC-PL. Section V presents a timing analysis for PAC-PL.
Section VI reports on our experimental evaluation. Finally,
Section VII discusses the related work and Section VIII
concludes the paper.

II. BACKGROUND

A. Control-flow integrity

CFI is a term that is generally referred to a set of security
countermeasures focused on enforcing that the execution flow
of computational activities coincides with one of the legal
paths defined by their canonical control-flow graph (CFG) [6].
It consists of a directed graph in which nodes represent
routines or basic blocks and arcs indicate control transfer
instructions. Arcs can be categorized as forward-arcs and
backward-arcs. The former category encompasses control-flow
transfers such as branches or function calls, while the latter
incorporates returns from functions. Branches can be direct
or indirect. Direct branches transfer the execution flow to
a target destination computed at compile time. In contrast,
indirect branches jump to a value computed at run-time and
stored in a register or memory. Almost all CFI techniques
watch over a program execution to ensure that the target
of an indirect branch is the intended instruction. At each
function return, they verify that the control comes back to
the calling function. Direct branches and function calls are
rarely supervised, especially if the code section is read-only.
Since control-flow hijacking is essential in many exploits (e.g.,
those based on buffer overruns), independently of the exploited
vulnerability [7], CFI techniques proved to be effective against
several popular attacks and are considered among the most
advanced security countermeasures.

B. CFI implementations

Until a few years ago, CFI techniques were almost con-
sidered unpractical because they were mostly implemented
in software introducing considerable run-time overhead. Most
recently, due to their relevance and effectiveness, leading chip
manufacturers such as ARM and Intel started introducing
hardware support to make CFI practically implementable with
low overheads. Most relevant to us, in 2016, ARM announced

the third version of their Cortex ARMv8-A microarchitecture
(v8.3-A). Among other novelties with respect to the previous
version, ARM introduced the support for pointer authentica-
tion (PA) [8]. PA is a hardware-assisted security feature that
makes it harder for attackers to modify pointers in memory
without being detected. Operating systems and compilers can
jointly leverage PA to implement security countermeasures
including CFI [5].

In a nutshell, PA works by cryptographically authenticating
the content of a register before using it. Indeed, it is conceived
as a protection against modification of code pointers such as
return addresses stored in memory. For instance, PA represents
a valuable protection mechanism to ensure that functions only
return to legal locations as expected by the program according
to the CFG, hence preventing stack overflow attacks.

C. Pointer authentication in ARMv8-A

1) Mechanism overview: In 64-bit architectures, not all the
available bits are actually used to address memory (even the
virtual one), as the available address space can be referenced
with less than 64 bits. Typically, 48 bits are enough to address
all the memory-mapped space. Therefore, the most significant
part of 64-bit pointers is, in practice, unused. As a matter of
fact, on an ARMv8-A Linux kernel (aarch64), only the least
significant 48 bits are used. ARM’s PA implementation uses
part of the remaining (most-significant) 16 bits of memory
addresses to store a pointer authentication code (PAC) [9],
which is the means by which PA is implemented. In other
words, PA works by embedding an authentication code, i.e.,
the PAC, within the authenticated pointer itself.

Technically speaking, the PAC is a cryptographic check-
sum obtained by truncating the output of the QARMA [10]
algorithm, a lightweight tweakable block cipher. QARMA
guarantees authenticity and integrity through tweaks, i.e., the
permutation computed by the algorithm on the plaintext is
determined by a secret key and an additional salt value. As
such, the PAC is computed by elaborating three inputs: (i) the
value of the memory pointer to be authenticated, (ii) a secret
key, which is stored in dedicated processor registers, and (iii)
a piece of context information used to discriminate where the
authenticated pointer can actually be used. A relevant example
of context information is the stack pointer, which binds the
authenticated pointer to the stack frame of a certain function.

Signed pointers, i.e., pointers that include both the actual
memory pointer and the PAC, must be authenticated before
being used. Note that signed pointers cannot be directly used
as they are because they would not be recognized as valid
memory addressed due to the presence of the PAC in the
most significant bits. The authentication process works by
recomputing the PAC for the pointer, using the key and
context information, and comparing the resulting PAC with
one stored in the signed pointer. The creation of PACs and
their authentication are illustrated in Figure 1.

2) ISA extension: A set of processor registers has been
introduced in the ARMv8.3-A microarchitecture to store the
keys required to create PACs. The current specification defines



Pointer

Tweak

Key

QARMA PAC

Tweak

Key

QARMA PAC

Pointer

False True

=

Invalid pointer

Sign

Auth

PAC     Pointer    

PAC     Pointer 

Fig. 1. Flowcharts of pointer signing and authentication processes.

five 128 bit registers for this purpose. Keys are also assigned
a type named A or B. The actual semantic of a type-A or
type-B key is left to the programmer. These registers are not
accessible at EL0 but are also not tied to specific exception
levels. Hence, to hide keys for certain exception levels, the
software running at EL1, EL2, or EL3 is required to explicitly
clear the content of the key registers [11]. In general, the whole
key management process is left to the programmer. The keys
must be ephemeral (for instance, the operating system can
generate a key for each process at EL0).

The PA feature requires the addition of several instructions
to the instruction set architecture (ISA) to accomplish the
creation and authentication of PACs. Two sets of instructions
have been introduced in ARMv8.3-A to serve this purpose.
They are denoted by PAC* and AUT* for the creation and
authentication of PACs, respectively.
PAC* and AUT* are sets of instructions that comprehend

specialized opcodes to create PAC for instruction and data
pointers using a certain key register. As an example, given an
instruction address stored in the Xd register, the PACIA Xd,
Xn instruction computes the PAC using the A key. The value
contained in Xn is used as a QARMA tweak and constitutes
the context information. The instruction also has the side effect
of placing the resulting PAC in the upper part of Xd, which will
hence contain the signed pointer. The signed pointer contained
in Xd must then be authenticated using the AUTIA instruction.
When the authentication succeeds, AUTIA restores the original
pointer into Xd. Otherwise, if the verification fails, the PAC is
replaced with a specific pattern that alters the pointer value to
turn it into an illegal one that, if used, will generate a memory
access exception [5]. Unfortunately, a PA-specific exception
to be generated when the authentication of a pointer fails
has been only recently introduced as part of the ARMv8.6-
A architecture [12]. Without this exception, it is hence hard to
distinguish a CFI violation from any other non-security-related
illegal memory access, e.g., those due to a software bug.

3) PA to enforce CFI: The sets of PAC* and AUT* instruc-
tions can be used to enforce CFI. As a relevant example, note

paciasp
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

; function body

ldp fp, lr, [sp], #FRAME_SIZE
autiasp
ret

Fig. 2. Example of function with link register protected by ARM’s PA.

that the PA mechanism can be used to sign and authenticate
the return address stored in the stack frame of a function.
The function call convention on ARMv8-A works as follow:
branch-and-link instructions (BL and BLR) allow transferring
the execution to a given address and setting the link register
(LR) to the address of the next instruction, i.e., the so-called
return address. If the called function, in turn, calls another
function, the return address is pushed to the stack (as it is
typical in Intel x86 systems), and so on for the next functions.
In other words, only leaf functions can avoid storing the link
register value in the stack.

PA instructions can hence be used to sign the return address
stored in the link register before being pushed to the stack. The
current stack pointer can be used as a context information,
otherwise the same return address, which may be computed
several times, would result in the same signed pointer that can
be reused to accomplish attacks.

The ARMv8.3-A instruction set provides two instructions
for this purpose: PACIASP and AUTIASP. They implicitly
use LR as the register that contains the pointer to be signed
and the stack pointer (SP) as the context information. For this
reason, they are expected to be the most used PA instructions
to implement CFI for standard function calls.

4) Compiler- and OS-level support: Both GCC and LLVM
already support PA. For instance, with GCC 10 and Clang
12, the option -mbranch-protection=standard turns
on PA for signing the return address of functions stored
in the stack (i.e., leaf functions are not protected). Type-A
keys (stored in the AP*Key_EL1 registers) are used. Other
options to tune the protection level are available. With this
option enabled, the compiler produces a specific prologue
and epilogue for non-leaf functions using PA instructions: an
example is shown in Listing 2.

The Linux kernel offers a basic support for ARM’s PA,
both at user and privileged levels. When the kernel runs on
a CPU that offers the PA instructions, the kernel assigns a
set of random keys to each process. Specifically, each process
has five random user keys (as mandated by the ARM’s PA
specification) and a random kernel key (stored in the A key).
The set of keys is assigned when a process is created. All
threads of a process share the same keys, which are also
preserved after a fork(). When the scheduler of the kernel
decides to preempt a process, its keys are stored into the



process control block. On kernel entry, the kernel switches the
user A key with the kernel A key and, viceversa, on kernel
exit. Each PAC occupies 55−VA_SIZE bits, where VA_SIZE
denotes the virtual address size configured by the kernel. The
kernel can decide to disable the protection: in this case, PAC*
and AUT* instructions are treated as NOPs.

III. PROBLEM DEFINITION

Pointer authentication is an extremely relevant technique to
enhance the security capabilities of software systems. Never-
theless, the hardware support to efficiently implement PA is
available on ARMv8.3-A architectures only and even as an
optional feature. Today, there exist many commercial-off-the-
shelf (COTS) system-on-chips (SoC) that include processors
based on older versions of the ARMv8-A architecture and,
as such, do not dispose of hardware support for PA. These
platforms are going to stay on the market for a long time
and are already employed in several systems, which hence
lack of a key feature to enhance the security of the software
they execute. For instance, even the latest SoC by Xilinx, i.e.,
Versal, which has still to enter in full production, includes
Cortex-A72 processors based on the ARMv8.0-A architecture
only. In this work, we aim at supporting PA in ARMv8-A
platforms that do not dispose of the corresponding hardware
support. Fortunately, in heterogeneous platforms that couple
processor cores with programmable logic (PL) implemented
with field-programmable gate arrays (FPGA) technology, it
is possible to deploy custom hardware devices to efficiently
implement PA with minimal support from the software side.
In this paper we explore this idea while also proposing
enhancements to the official ARM’s PA support.

A. Platform model

An FPGA SoC platform combines a Processing System
(PS), including one or more processors (generally ARM-
based), with a Field-Programmable Gate Array (FPGA) fabric.
While software tasks (SW-tasks) are executed on processors,
the FPGA fabric can host custom hardware devices such as
hardware accelerators (HAs). The internal architecture of a
typical FPGA SoC platform is illustrated in Figure 3. HAs are
typically controlled by SW-tasks. HAs and processors share an
off-chip DRAM memory, which is accessed through a memory
controller embedded in PS. The communication between the
processors and the HAs is allowed by the FPGA-PS and PS-
FPGA interfaces (see the figure).

APU
FPGA

PS-FPGA
Interface

DRAM
Controller

PS

Interconnect

ARM Cores

PS
AXI 

interconnect

Fig. 3. Typical high-level internal architecture of FPGA SoC platforms. Only
the components relevant to this work are illustrated.

B. Challenges in implementing PA using PL

Efficiently implementing PA employing PL requires facing
with the following major challenges: (i) the FPGA clock
frequency is slower than the one of the PS (100-300 MHz
vs. 1-2 GHz): as such, the response times of the devices
deployed in PL must be carefully optimized to ensure a
proper cooperation between PL and PS; (ii) data transfers
between PS and PL (e.g., pointers to be authenticated) require
synchronized bus transactions that, if not properly handled,
may introduce a considerable delay in the execution of SW-
tasks; (iii) bus transactions may suffer interference from other
bus masters (e.g., DMA, other cores).

C. Threat model

From the attacker perspective, we assume that an attacker (i)
can read/write memory with a successful stack/heap overflow
attack (e.g., controlling return addresses, function pointers or
VTable pointers, etc.), (ii) disposes of a full knowledge of
the process memory layout, (iii) has successfully bypassed
address space layout randomization (ASLR), if present, and
(iv) optionally, can even leak data from the task control block
(TCB) stored into kernel memory in which the PAC key
is saved. Note that assumption (iv) makes PA not secure
when adopting the official ARM’s PA support: this is because
attackers capable of leaking the key can arbitrarily forge PACs
and hence bypass CFI. The solution proposed in this work
uses an improved key management strategy based on ARM
TrustZone and hypervisor technologies, which is provided as
an optional feature to strengthen the capabilities of PA.

IV. PAC-PL: DESIGN & IMPLEMENTATION

This section presents PAC-PL, the proposed solution to
enable PA in FPGA-based SoC with processors that do not
include built-in hardware support for PA.

A. Design principles

PAC-PL has been designed according to the following
design principles.
High efficiency. PAC-PL is conceived for resource-constrained
embedded systems in which it is extremely important to
contain run-time overhead and memory footprint. As such,
our solution must be capable of (i) supporting low-latency data
transfers between PL and PS, (ii) ensuring short response times
in signing and authenticating pointers, and (iii) necessitating
a minimal set of processor instructions to be controlled.
Lock-step execution. When dealing with software security, it
is almost impossible to predict all possible ways with which
a system can be attacked. For instance, even executing a
few dozen of malicious instructions could lead to a privilege
escalation. As such, PAC-PL must be capable of stopping a
hijacked process as soon as a CFI violation is detected.
Key protection. Keys must be stored in such a way that it is
not possible to access them from user-space so that they can
be controlled only from privileged exception levels (the OS or
a hypervisor). Finally, the writing of a new key or the reading



of the generated PAC from the PL device must reset the last
generated PAC, hence preventing data leakage.
Seamless integration with OS and compilers. To make PAC-
PL practically usable in real-world systems, its design must
be suitable for integration with popular OS such as Linux and
compilers such as GCC. Considering that OS- and compiler-
level support for PA has already been proposed, PAC-PL aims
at retaining at much as possible the interface of the official
ARM’s PA mechanisms, hence requiring modicum changes to
the software support that is already available. In particular,
PAC-PL preserves the same strategy adopted by Linux for
managing PA by assigning a different key to each process,
having care of changing key at each context switch.

B. Hardware accelerator design and workflow

PAC-PL is based on a hardware accelerator deployed in
PL that is composed of (i) AXI-conf, a device to interact
with the system bus that exposes an AXI-lite subordinate
interface to interact with the PS; and (ii) QARMA-crypto, a
cryptographic core that implements the QARMA algorithm.
Cores in the PS can interact with AXI-conf by simply acting
on memory-mapper registers exposed as part of the AXI-lite
interface. AXI-conf also exposes an interrupt signal to notify
the PS. QARMA-crypto is then commanded by AXI-conf
according to the configurations set in its registers. A graphical
representation of the accelerator is reported in Figure 4.

TABLE I
REGISTERS OF THE PAC-PL INTERFACE.

Register Offset Bits Kernel access User access
KEY LOW 0x0 64 R/W -
KEY HIGH 0x8 64 R/W -
CTRL 0x10 64 R/W -
PLAIN 0x1010 64 R/W R/W
TWK 0x1018 64 R/W R/W
CIPH 0x1020 64 R/W R/W

For simplicity, PAC-PL only provides one key (the exten-
sions required to support the fifth keys of the ARM’s PA
specification are trivial and not discussed here to unnecessarily
complicate the presentation). The interface of the PAC-PL
device in terms of memory-mapped registers is reported in
Table I. The registers are split into privileged and non-
privileged ones and defined as follows. Privileged registers)
KEY_LOW and KEY_HIGH hold bits [63:0] and [127:64],
respectively, of the 128-bit key used to generate PACs. CTRL
is the control register of the accelerator. An interrupt is
generated when CTRL[63] == 1. CTRL[63] has to be set to
0 to mark the interrupt as handled. The six least significant
bits (CTRL[5:0]) specify the size of the generated PACs. Non-
privileged registers) PLAIN and TWK hold the plaintext and
tweak operands of the QARMA algorithm, respectively. CIPH
provides the signed pointer after executing a signing operation
and holds the signed pointer to be authenticated before exe-
cuting an authentication operation. If the authentication failed,
it holds zero. Note that privileged registers are mapped in
a different memory page with respect to the non-privileged

ones (with 4KB memory pages the displacement of the offsets
is 0x1000). This is because privileged registers are intended
to be mapped in the address space of the OS to control the
configuration of the PAC-PL accelerator, while the others can
be directly mapped in the address space of processes. In this
way, the most frequent PAC-PL-related operations (signing
and authenticating pointers) can be performed without the
intervention of the OS (process can directly work on the PAC-
PL accelerator registers), hence fostering efficiency.

The accelerator offers the same functionality provided by
both PAC* and AUT* instructions from the ARM’s official
PA support. The interaction between the PS and the hardware
accelerator for signing and authenticating pointers is illustrated
in Figure 7 (for the case in which LR and SP processor
registers are used) and discussed next.

PAC-PL accelerator

QARMA-crypto

AXI-conf


KEY_LOW

KEY_HIGH

PLAIN

TWK

CIPH

CTRL

63 0

63 0

Interrupt to

 processor

SProcessor

configuration

Fig. 4. The architecture of the PAC-PL accelerator.

AuthenticationSigning

PS FPGA

write LR & SP
in PLAIN and TWK

LR value signed

sign LR

read CIPH

PS FPGA

interrupt on auth fails

write LR & SP
in CIPH and TWK

original LR value 

authenticate
LR

read CIPH

destroy
CIPH

destroy
CIPH

Fig. 5. Sequence diagrams of signing and authentication operations.

Signing a pointer. The processor writes the pointer to be
signed and the context information in the plaintext and tweak
registers of the PAC-PL accelerator, respectively. These oper-
ations trigger QARMA-crypto to start the generation of the
PAC. The signed pointer (i.e., the pointer plus its PAC in the
most significant bits) will be eventually made available to the
processor in the cyphertext register together with the pointer.
The reading of the latter register also clears the register. Note
that a context switch may occur right after generating a PAC.
In this case, the generated PAC will be reset to a null value
and the processor will have to retry to sign the pointer.

When protecting the return address of functions, these
operations have to be performed at the prologue of each non-
leaf function. The corresponding ARMv8 assembly code is



reported in Figure 6 for the case in which the stack pointer (SP)
is used as a context information. The workflow of the signing
process is also reported in the state machine of Figure 7(a).

mov x10, #DEV_BASE
mov x9, sp
0:
; write lr and sp in the device
stp lr, x9, [x10, #DEV_PLAIN_OFFSET]
; read the signed pointer from the device
ldr x11, [x10, #DEV_CIPH_OFFSET]
; retry if the signed pointer is null
cbz x11, 0b
; place the signed pointer in the link register
mov lr, x11

; former prologue
stp fp, lr, [sp, #-FRAME_SIZE]!
mov fp, sp

Fig. 6. Source code of a function prologue protected with PAC-PL.
DEV_BASE denotes the base address of the PAC-PL accelerator registers,
while DEV_PLAIN_OFFSET and DEV_CIPH_OFFSET denote the offsets
of the plaintext and cyphertext registers, respectively.

Idle Encrypt

Wait for sign

 request

Cypher

ready

Wait for read

Destroy

data

Received 

sign request

Encryption 

done

Cypher read

Data 

destroyed

Signing

Idle Encrypt

Wait for 

auth request

Check
signInterrupt

Received 

auth request

Bad

sign

Data

destroyed

Authentication

Destroy 

data

Wait 

for processor

Sign 

ok

Clear 

interrupt

(a) (b)

Fig. 7. State machines of the working flow of PAC-PL.

Authenticating a pointer. The processor writes the context
information and the signed pointer in the tweak and cyphertext
registers of the PAC-PL accelerator, respectively. These oper-
ations trigger the QARMA-crypto to start the re-generation
of the PAC that, once computed, is eventually compared
against the one in the signed pointer. If they correspond, the
clean pointer (i.e., without the PAC) is made available in the
cyphertext register. Otherwise, a null pointer is written in the
cyphertext register, an interrupt signal is sent to the processor
to notify a failed pointer authentication, and the accelerator
is disabled (new pointers cannot be signed or authenticated).
The processor finally reads the cyphertext register. In the case
of a failed pointer authentication, the processor can detect the
null pointer and busy wait to avoid making progress with a
corrupted execution until the interrupt is served.

; former epilogue
ldp fp, lr, [sp], #FRAME_SIZE
; end of former epilogue

mov x10, #DEV_BASE
mov x9, sp
1:
; write sp and lr in the device
stp x9, lr, [x10, #DEV_TWK_OFFSET]
; read the authenticated pointer
ldr x11, [x10, #DEV_CIPH_OFFSET]
; retry if the authenticated pointer is null
cbz x11, 1b
; place the auth. pointer in the link register
mov lr, x11

ret

Fig. 8. Source code of a function epilogue protected with PAC-PL.
DEV_BASE denotes the base address of the PAC-PL accelerator registers,
while DEV_TWK_OFFSET and DEV_CIPH_OFFSET denote the offsets of
the tweak and cyphertext registers, respectively.

The corresponding ARMv8 assembly code is reported in
Figure 8 for the case in which the stack pointer (SP) is used
as a context information. The workflow of the authentication
process is also reported in the state machine of Figure 7(b).

The sign and authentication operations do not interfere.
One PAC-PL accelerator per core must be provided. The
virtual addresses of the accelerator’s registers are always the
same. When a process is migrated to another core, the virtual
address space of the process must be reconfigured to match
the corresponding PAC-PL accelerator.

C. Compiler-level support

1) Overview: We implemented compiler-level support for
PAC-PL as a plugin for GCC, which offers a way to load
custom modules that interact with the main module without
modifying the core compiler source code. Likewise, the sup-
port for the ARM’s PA, our plugin provides security protection
transparent to the programmer, i.e., no code modifications are
required. The plugin has the purpose of generating instructions
at the prologues and epilogues of functions to sign return
addresses. Technically speaking, our plugin works as an addi-
tional (late) register transfer logic (RTL) pass that analyzes the
low-level RTL representation and protects a set of functions.
The plugin works with all the latest GCC versions and will
be released under a GPL license. The plugin makes heavy
use of the API offered by GCC and consists of approximately
600 physical source lines of code (SLOC) written in C++ and
ARMv8-A assembly.

2) Compiler passes and optimizations: GCC works by
analyzing code in subsequent phases called passes and our
plugin registers itself as a compiler pass. At each pass,
the compiler performs some actions, such as abstracting the
representation of a program, optimizing data structures, etc.
Our plugin operates as a back-end pass at the very last stages
of compilation where GCC builds the low-level intermediate



representation of the program using the RTL. For each function
produced by the compiler, the plugin decides if the function
needs to be protected with PAC-PL according to two optimiza-
tions. The first one consists in excluding leaf functions from
being protected. As highlighted in Section II, on ARMv8-A
systems, return addresses are pushed on the stack only by non-
leaf functions; hence, only return addresses of these functions
end up being stored in memory and are therefore prone to
corruption without hijacking the control flow. The second
optimization consists in excluding functions that do not make
use of arrays and that do not contain the alloca standard
library function. This optimization is inspired by the logic of
the GCC support for stack canaries, i.e., the one enabled by the
popular option -fstack-protector1. Indeed, if a function
does not use any array, the probability that it can be exploited
to trigger a buffer-overflow is near zero.

D. Improved key management

Key management is one of the most vulnerable aspects of
systems based on cryptography. In ARM’s PA, key manage-
ment is left to the programmer, which can hence introduce
vulnerabilities in the security mechanism. For instance, in the
current implementation of ARM’s PA in Linux, whenever a
process is created, the kernel generates a random key and
stores it into the process control block. The process can sign
and authenticate pointers using the key, but it cannot read
the key itself (key registers are non-accessible from EL0).
Assuming an attack scenario in which the attacker can leak
kernel data (e.g., think of the famous Spectre and Meltdown
attacks), the PA keys can be retrieved and used to craft valid
PACs, hence opening for hijacks of the control flow.

To address this issue and provide a more robust structural
support for key management, we also provide, as an optional
feature, a software mechanism to more securely manage the
keys of PAC-PL. Instead of storing PA keys in the process
control blocks residing in the OS memory, we leverage the
ARM TrustZone technology, which provides a hardware-
isolated execution environment and memory storage named
Secure World. Note that ARM TrustZone is available on
all modern ARM processors. To ensure transparency in the
implementation of the Linux PAC-PL support, which we want
to be same with or without this optional key management
feature, we require the presence of a hypervisor configured to
trap all accesses to the PAC-PL key registers (this is easily
possible because, by the design of PAC-PL, they are in a
separate memory page with respect to the other registers). The
mechanism works as follows (see also Figure 9): (i) when the
kernel wants to write a new key K in the key register of the
PAC-PL accelerator the access is trapped and emulated by the
hypervisor running at EL2, (ii) the hypervisor then forwards
the request to the Secure Monitor at EL3 through a secure
monitor call (SMC), (iii) the Secure Monitor calls a trusted
firmware running in Secure World (S-EL1) also forwarding

1This option protects functions with buffers larger than or equal to 8 bytes
or containing the alloca function call [13].

K, and finally (iv) the trusted firmware associates K to the
actual key K ′ according to a hash function writes K ′ in the
key register of the PAC-PL accelerator, which can be directly
accessed only from Secure World (the access is not trapped).

Note that, in this way, any data leak in Non-Secure World
cannot allow retrieving the actual key. To implement this
improved key management, a trusted firmware that runs in
S-EL1 is needed. The PAC-PL accelerator may be used to
generate the hash of K: for this purpose, the accelerator allows
a configuration to obtain a 64-bit hash. In our implementation,
adding this feature resulted in a trusted computing base
enlarged by about 80 lines of code.

PAC accelerator

Application

Kernel

Hypervisor

Secure Monitor (ATF)

Trusted payload

for key management

EL0

EL1

EL2

EL3

Non-secure world Secure world

write new key

SMC

forward request

Trap & emulate

forward request

write key' = f(key)

PS FPGA

store key'

Fig. 9. Illustration of improved key management workflow of PAC-PL.

E. Attack detection

Until the recent introduction of the ARMv8.6-A architec-
ture, the official ARM’s PA support was not designed to easily
detect attacks. Indeed, when the authentication of a pointer
fails, the ARM’s PA support modifies signed pointers to make
sure that a translation fault (i.e., an illegal memory access)
occurs when dereferencing the pointer. The corresponding
processor exception is hence hard to be distinguished from
any other illegal memory access, e.g., due to a software bug.

PAC-PL overcomes this issue by explicitly generating an
interrupt signal whenever the authentication of a pointer fails.
The kernel is then in charge of handling the interrupt by a
corresponding service routine and taking decisions about the
compromised process (e.g., to terminate the process, which
is our default option). This feature has been implemented in
Linux with a custom kernel module. Note that the availability
of this interrupt signal is also helpful to take higher-level
decisions in a system. For instance, if a hypervisor is present, it
is possible to monitor the frequency of the PAC-PL interrupts
and decide to disable or reset a virtual machine under attack
to avoid more severe consequences.

V. TIMING ANALYSIS

This section presents a timing analysis to bound the time
required to sign and authenticate pointers with PAC-PL, hence
favoring its adoption in real-time embedded systems. Due



to space limitations, the analysis considers a single PAC-
PL accelerator deployed in PL. Its extension to multiple
accelerators is left to future work and can be performed by
building upon state-of-the-art bus analysis techniques such
as [14] and [15]. The analysis also does not consider the
time to fetch the instructions to interact with the PAC-PL
accelerator, i.e., it refers to the case of hot caches. This is
because bounding (cache-related) instruction fetching delays
is a general problem that is independent of this work: the
interested reader can refer to the survey of Maiza et al. [16].

A. Architecture model

1) Processing system: The PS-FPGA interface exports mul-
tiple ports enabling the PS to communicate with the PL. The
interfaces are based on the AMBA AXI standard, which is
the de-facto standard for communications in modern FPGA
SoCs [17]. Typically, communications within the PS are han-
dled by a multi-level AXI-based interconnect that connects
the resources in the PS with the DRAM memory and the
FPGA fabric. Taking the Xilinx Ultrascale+ SoC as a reference
platform, we identified the path for the communication be-
tween the processor and the PAC-PL accelerator and analyzed
the delay components along that path. To cope with these
delays, we define: (a) dPS

AW, the worst-case propagation time
from the issue of an address write request by the processor
interacting with the PAC-PL accelerator and the arrival of
the address request to the PS-FPGA interface; (b) dPS

W , the
worst-case propagation time experienced by a write data word
issued by the processor to reach the PS-FPGA interface;
(c) dPS

B , the worst-case propagation time experienced by a
write response from the PS-FPGA interface to the processor
issuing the corresponding write request; (d) dPS

Int, the worst-
case propagation time required to propagate the interrupt
generated by the PAC-PL accelerator from the PS-FPGA
interface to the processors; (e) dPS

AR, the worst-case propagation
time elapsed for the propagation of an address read request
from a processor to the PS-FPGA interface; and (f) dPS

R , the
worst-case propagation time experienced in the propagation of
a read data word from the PS-FPGA interface to a processor.

2) FPGA interconnect: Once propagated through the PS,
the transactions directed to the PAC-PL accelerator issued by
a processor reach the PS-FPGA interface. From this point on,
the requests are propagated by the FPGA interconnect, until
reaching the accelerator. The FPGA interconnect influences
the worst-case response time of transactions. Similarly to
what introduced before, it is required to define other delay
terms: (a) dFPGA

AW , the worst-case propagation time of an
address write request from the PS-FPGA interface to the
PAC-PL accelerator; (b) dFPGA

W , the worst-case propagation
time experienced in the propagation of a write data word
from the PS-FPGA interface to the PAC-PL accelerator; (c)
dFPGA

B , the worst-case propagation time for the propagation
of a write response from the PAC-PL accelerator to the PS-
FPGA interface; (d) dFPGA

Int , the worst-case propagation time to
propagate the interrupt generated by the PAC-PL accelerator to
the PS-FPGA interface; (e) dFPGA

AR , the worst-case propagation

time for the propagation of an address read request from the
PS-FPGA interface to the PAC-PL accelerator; (f) dFPGA

R , the
worst-case propagation time to propagate a read data word
from the PAC-PL accelerator to the PS-FPGA interface.

3) PAC-PL accelerator: The requests issued by the pro-
cessor to the accelerator are managed by AXI-conf (see
Section IV). Following the AXI standard, each received write
request is replied with a write response acknowledging the
processor. AXI-conf requires a few clock cycles to generate
such a response: we define tConf

W as the maximum delay it
introduces to generate such a write response after receiving
a write request and the corresponding data word. Each sign
and authentication operation requires the execution of the
QARMA algorithm on the input data. This phase is called
QARMA-crypto execution and is performed in at most tQARMA

time units. The processor can read results from the PAC-
PL accelerator by issuing read requests. Such requests are
managed by AXI-conf, which, after receiving the request,
provides the requested data word on the external bus of the
accelerator after at most tConf

R time units. The time required
to compare PACs during a pointer authentication is bounded
by tCheck, while the time to generate the interrupt to notified
a failed authentication is bounded by tInt.

B. Bounding the response time of the PAC-PL accelerator

Lemma 1. (Write transactions) The delay experienced by a
processor to write a register in the PAC-PL accelerator is
bounded by:

tPAC
W = max(dPS

AW, d
PS
W ) +max(dFPGA

AW , dFPGA
W ) + tConf

W

+dFPGA
B + dPS

B .
(1)

Proof. The interaction starts with the issue of a write request
AW from the processor dropped in the PS interconnect.
Following the AXI standard, AW is immediately followed by
the data word W to be written. From the model of Sec. V-A,
the worst-case propagation time for AW and W to reach the
FPGA subsystem are dPS

AW and dPS
W , respectively. Since AXI-

based interconnections propagate address and data in parallel,
both of them are available at the PS-FPGA interface in at most
the maximum delay between dPS

AW and dPS
W . The same con-

sideration follows for the FPGA interconnect – after at most
max(dFPGA

AW , dFPGA
W ) the address request and the corresponding

data word are available at the AXI port of the PAC-PL
accelerator. Still from the model of Sec. V-A, once the request
and data are received, the PAC-PL accelerator replies with a
write response B after at most tConf

W time units. B is propagated
through the FPGA interconnect in at most dFPGA

B time units
and eventually propagated through the PS interconnect in at
most dPS

B time units, finally reaching the processor. The lemma
follows by summing up these contributions.

Lemma 2. (Read transactions) The delay experienced by a
processor to read a register in the PAC-PL accelerator is
bounded by:

tPAC
R = dPS

AR + dFPGA
AR + tConf

R + dFPGA
R + dPS

R . (2)



Proof. The interaction starts with the issue of a read request
AR from the processor dropped in the PS interconnect. The
worst-case propagation time for AR to reach the FPGA sub-
system is dPS

AR. Once AR is available at the PS-FPGA interface,
the propagation time in the FPGA interconnect to reach the
AXI port of the PAC-PL accelerator is upper bounded by
dFPGA

AR . Once AR reaches the accelerator, the requested data
word R is available at its external interface after, at most, tConf

R

time units. R is propagated through the FPGA interconnect in
at most dFPGA

R time units and through the PS interconnect in at
most dPS

R time units, until reaching the processor. The lemma
follows by summing up these contributions.

By profiling our implementation, we found that the follow-
ing inequalities hold (details are provided in Section VI-A):
• tQARMA + tCheck < dPS

AR + dFPGA
AR ;

• tInt + dFPGA
Int + dPS

Int < tPAC
R .

These observations allow bounding the worst-case time
required to either sign or authenticate a pointer as follows.

Lemma 3. The response time of a PAC-PL operation, i.e.,
either signing or authenticating a pointer, is bounded by:

tOP = 2 · tPAC
W + tPAC

R . (3)

Proof. Signing: To issue a request for signing a pointer, the
processor needs to write the plaintext and the tweak, each
written to a corresponding register of the PAC-PL accelerator.
From Lemma 1, each write transaction is upper bounded by
tPAC
W . Thus, in the worst-case scenario, the setup of the PAC-PL

is bounded by 2 ·tPAC
W . From the model of Sec. V-A, QARMA-

crypto executes in tQARMA time units. The processor reads
the result by issuing a read request. As from lemma 2, the
response time of such a request is bounded by tPAC

R . Since the
propagation time of the read request (dPS

AR + dFPGA
AR ) is larger

than tQARMA and noting that the read request is issued after the
end of the two write transactions, the processor is guaranteed
to read the signed pointer after at most tPAC

R time units.
Authentication: To issue a request for authenticating a

pointer, the processor needs to write the cyphertext and the
tweak to the corresponding registers of the PAC-PL accelera-
tor. Again, the time for each write transaction is bounded by
tPAC
W . Following the two write transactions, the processor issues

a read transaction to read the result of the authentication. The
response time of the read transaction is bounded by tPAC

R . Since
(tQARMA+tcheck) is lower than dPS

AR+dFPGA
AR , and noting that the

read request is issued after the completion of the write request,
it is guaranteed that, when the read request reaches the PAC-PL
accelerator, the authentication is completed. Moreover, since
tInt+dFPGA

Int +dPS
Int is lower than tPAC

R , it is guaranteed that, when
the data word corresponding to the read transaction reaches
the processor, the interrupt has already reached the interrupt
controller. Hence the latter operations last at most tPAC

R in total.
The lemma follows.

VI. EVALUATION

This section presents the results of a set of experiments that
were conducted to assess the performance of PAC-PL in terms

of run-time overhead, memory footprint, and resource con-
sumption of the accelerator. The ZCU102 evaluation board by
Xilinx, which is equipped with Zynq UltraScale+ XCZU9EG
SoC, was taken as a reference platform. A security evaluation
of PAC-PL is also briefly discussed at the end of the section.

At the time of writing, and to the best of our knowledge,
there are only two SoC on the market that provide hardware
support for ARM’s PA: A12/A13 Bionic by Apple and Kirin
980 from HiSilicon. Unfortunately, no off-the-shelf evaluation
boards for these SoC are available. Hence, a comparison
between PAC-PL and the stock ARM’s PA support was not
possible. To evaluate PAC-PL, we used a set of applica-
tions from the TACLeBench suite [18] and the SanDiego
CortexSuite [19]. From both benchmark suites we excluded
those applications that were not suitable for being directly
compiled for ARMv8-A. From the TACLeBench suite we
excluded those applications that do not include functions to
be protected. Furthermore, from the CortexSuite we excluded
those applications that make use of randomized algorithms
to reach convergence, which were not suited to enable a
performance comparison by repeating their execution. Each
selected benchmark was cross-compiled using the GCC ARM
10.2 compiler, with and without our plugin for PAC-PL.
The plugin was also responsible for mapping the portion of
physical memory that includes the non-privileged PAC-PL
registers in the process virtual address space.

PAC-PL has been implemented using the VHDL language.
The QARMA-crypto Core makes use of a VHDL implementa-
tion of the QARMA algorithm developed by Werner et al. [20].
The synthesis of the PL accelerator was carried out using
Xilinx Vivado 2020.2. The resource consumption of the PAC-
PL accelerator is reported in Table II. As it can be noted, the
accelerator requires a very limited amount of resources.

As a baseline for comparison, we compared our approach
against a software-only CFI implementation. In order to per-
form a fair evaluation that considers the same threat model and
the implied security level, we compared against a software-
only PA implementation, referred to as PAC-SW in the follow-
ing, which provides the same security capabilities of PAC-PL.
It was realized as a pluggable kernel module that implements
the sign and authentication state machines. The module and
the software version of QARMA were written using the C
language.

When the module is loaded into the kernel, a new misc-
device is made available under /dev. Processes cannot di-
rectly read or write in the device; rather, they need to map the
device in their virtual address spaces as an additional virtual-
memory area by means of the mmap syscall. As for PAC-PL
and the ARM’s PA implementation, note that PAC-SW still
guarantees that user-space processes cannot access PA keys.

The benchmarks were executed on Petalinux 2021.1. Their
execution times were collected using a custom tool written in
C that forks its execution to run each benchmark (fork() and
execvp() were used). The tool gets the system timestamp by
clock gettime() from the time.h (with CLOCK_MONOTONIC)
library just before and after the fork is performed. Each bench-



TABLE II
RESOURCE CONSUMPTION OF PAC-PL COMPARED WITH THE COST OF AN
FPGA INTERCONNECT AND THE TOTAL AVAILABLE RESOURCES ON THE

ZYNQ ULTRASCALE+ XCZU9EG (ZCU102 BOARD) AND THE
AES-ZU3EG (ULTRA96 BOARD)

Target: ZCU102 TOTAL PAC-PL FPGA INTC
CLBs 274080 2068 (0.8%) 2617 (1%)
FFs 548160 919 (0.1%) 3049 (0.6%)

Target: Ultra96 TOTAL PAC-PL FPGA INTC
CLBs 70560 2068 (2.9%) 2617 (3.7%)
FFs 141120 919 (0.7%) 3049 (2.2%)

mark was executed 1000 times, dropping out the outlier sam-
ples with values over the 95th percentile (due to benchmark-
unrelated interference introduced by Linux services).

The results for the TACLeBench suite are reported in
Table III. The second and third columns of the table report the
mean execution times without and with the PAC-PL protection,
respectively. The fifth column reports the number of protected
functions executed per second when continuously running the
benchmark. Percentage overheads are reported in the sixth
column of the table. Interestingly, the overhead introduced
by PAC-PL in some benchmarks is so small that it was
not detected by our measurements (same execution times for
the protected and non-protected versions). These benchmarks
are assigned a 0% run-time overhead in the table. The last
column reports the percentage overhead (OH) in terms of
memory footprint. Notably, we found that a function protected
by our plugin increases its footprint by 48 bytes. Figure 11
graphically illustrates the percentage run-time overhead of the
benchmarks: note that 21 out of 25 of them have overhead
below 10% and the average overhead introduced by PAC-PL
is about 16.65%. The overhead clearly depends on the number
of functions that are protected by PAC-PL: the more the larger.
Table III also reports the mean execution times with PAC-
SW (fourth column) alongside the corresponding overhead,
expressed with a slowdown factor, with respect to the case
without PA (seventh column). As it can be noted from the
table, the implied execution times are definitively prohibitive.

Table IV reports the same kind of results for the San
Diego CortexSuite, where PAC-PL exhibits even better results
(although three applications do not include functions to be
protected).

The improved key management strategy presented in Sec-
tion IV-D was implemented using CLARE, a type-1 real-time
hypervisor [21]. The round-trip time that elapses from the
trap of the access to the PAC-PL key registers, passing by
the execution of the trusted payload in Secure World, and
coming back to the execution in Linux was profiled on the
Zynq Ultrascale+. The results are reported in Table V. As
it can be noted from the table, the introduced overhead is
compatible with the sporadic usage of key registers (remember
that they are accessed at context switches).

0 100 200 300 400 500 600

Prologue

Epilogue

526

526

486

448

PS Clock cycles

Upper bound Max Measured

Fig. 10. Comparison of maximum measured times to execute the function
prologues and epilogues with respect to the bound by analysis.

A. Evaluation of response-time bounds

The delays introduced by the PAC-PL accelerator and the
FPGA interconnect can be effectively analyzed by means
of a System Integrated Logic Analyzer (System ILA) [22]
deployed in PL to probe a set of relevant signals. Such
technology cannot, unfortunately, be leveraged for profiling
the propagation delays introduced by the PS. This is because
the PS is made of hard silicon, hence no custom logic can
be deployed to probe signals. To face this challenge, we
deployed a custom hardware profiler in PL conceived to
introduce a known and constant delay in serving each of the
transactions issued by the processors. We then issued 1000000
read requests and 1000000 write requests to the profiler and
measured the response times. Thanks to the predictability in
the response time guaranteed by our profiler and knowing
the profiled propagation delays introduced by the FPGA
interconnect measured with the System ILA, we were able
to profile the overall maximum propagation delays introduced
by the PS, defined as dPS

Write = max(dPS
AW, dPS

W ) + dPS
B and

dPS
Read = dPS

AR+dPS
R , respectively, for read and write transactions.

The profiled results are summarized in Table VI and allowed
instantiating the timing analysis of Section V.

The execution times of both the function prologue and epi-
logue required by PAC-PL (as generated by our GCC plugin)
were also profiled by running them 1000000 times. These
measurements were performed from a bare-metal firmware
(still running on one of the Cortex-A cores of the XCZU9EG)
to avoid the typical interference generated by Linux. The mea-
surements were collected with hot caches (i.e., pre-fetching
the prologue and epilogue instructions) as considered by
our analysis. Figure 10 compares the maximum measured
execution times to the upper bounds given by the analysis
of Section V. As it can be noted from the figure, the analysis
correctly bounds all the collected measurements.

B. Security evaluation

PAC-PL preserves the same security capabilities of the
ARM’s PA implementation. Attacks based on guessing, forg-
ing, or substituting PACs that are effective against ARM’s PA
may hence also be effective against PAC-PL. Nevertheless, it is
important to note that the improved key management strategy
presented in Section IV-D and the attack detection mechanism
discussed in Section IV-E improve the security capabilities of



TABLE III
TIMING PERFORMANCE OF THE BENCHMARKS FROM THE TACLEBENCH SUITE WITH AND WITHOUT THE CFI SUPPORT.

Bench. name no PAC (s) PAC-PL (s) PAC-SW (s) Prot. Fun/s OH PAC-PL (%) OH PAC-SW (x) Footprint overhead

ammunition 0,187299298 0,264061311 8763,164772 439758 40,98% 46.787,0x 0,10%
anagram 0,005106490 0,011227707 441,5337322 520320 119,87% 86.465,2x 0,02%
audiobeam 0,001933759 0,001950937 1,169154285 8714 0,89% 604,6x 0,03%
basicmath 0,003566405 0,003843802 19,60050957 67381 7,78% 5.495,9x 0,02%
bitcount 0,000588526 0,000586522 0,173536739 3410 0,00% 294,9x 0,00%
cjpeg wrbmp 0,000764096 0,000764105 0,190194407 1309 0,00% 248,9x 0,01%
crc 0,000619830 0,000620693 0,173483114 3222 0,14% 279,9x 0,01%
filterbank 0,013577159 0,013581470 0,110793535 74 0,03% 8,2x 0,01%
fmref 0,001157648 0,003543533 171,2919319 641732 206,10% 147.965,5x 0,05%
gsm dec 0,003692272 0,003839493 10,13933127 36463 3,99% 2.746,1x 0,05%
gsm encode 0,010304174 0,010574756 19,68282736 24587 2,63% 1.910,2x 0,00%
huff dec 0,000932836 0,000941550 0,190190033 1062 0,93% 203,9x 0,01%
huff enc 0,001847069 0,001832258 0,174772603 1092 0,00% 94,6x 0,75%
insertsort 0,000557924 0,000557362 0,097826635 1794 0,00% 175,3x 0,00%
lms 0,000944936 0,000945996 0,098110963 1057 0,11% 103,8x 0,01%
ludcmp 0,000571426 0,000575620 0,097950857 1737 0,73% 171,4x 0,01%
md5 0,030401856 0,039176703 638,1477887 215638 28,86% 20.990,4x 0,03%
minver 0,000565801 0,000568674 0,097864848 1758 0,51% 173,0x 0,75%
mpeg2 0,313437533 0,312925333 27,10033014 1125 0,00% 86,5x 0,01%
ndes 0,000666498 0,000685293 1,303094601 24807 2,82% 1.955,1x 0,02%
powerwindow 0,005396462 0,005393379 0,329849098 742 0,00% 61,1x 0,04%
rijndael dec 0,010042055 0,010033722 0,181708348 199 0,00% 18,1x 0,02%
rijndael enc 0,009535291 0,009530081 0,182435988 210 0,00% 19,1x 0,02%
sha 0,004567239 0,004562490 0,101900501 219 0,00% 22,3x 0,01%
susan 0,149121310 0,140817085 7,283510958 28 0,00% 48,8x 0,02%

TABLE IV
TIMING PERFORMANCE OF THE BENCHMARKS FROM THE SAN DIEGO CORTEXSUITE WITH AND WITHOUT THE CFI SUPPORT.

Bench. name no PAC (s) PAC-PL (s) PAC-SW (s) Prot. Fun/s OH PAC-PL (%) OH PAC-SW (x) Footprint overhead
liblinear small 1,030671923 1,038614622 2,426655875 47 0,77% 2,4x 0,07%
motion-est small 0,200724591 0,199959897 203,3306641 5606 0,00% 1.013,0x 0,07%
pca small 1,623647403 1,623836179 1,623926245 0 0,00% 1,0x 0,09%
rbm small 0,068965434 0,068953107 0,068952105 0 0,00% 1,0x 0,09%
sphinx small 0,237910051 0,304823469 18343,94837 850541 28,13% 77.104,6x 0,02%
svd3 small 0,310233613 0,310193739 9,233728778 10 0,00% 29,8x 0,00%
kmeans small 0,626327233 0,626401080 1,798776152 2 0,01% 2,9x 0,00%
spectral small 41,45806728 41,45453931 42,10983737 0 0,00% 1,0x 0,00%

TABLE V
MAXIMUM AND AVERAGE ROUND-TRIP DELAYS WITH

HYPERVISOR-BASED KEY MANAGEMENT (IN NANOSECONDS)

Max Max 99th perc. Max 95th perc. Avg
8102 2248 2188 2056

TABLE VI
MAXIMUM DELAYS PROFILED ON THE ZYNQ ULTRASCALE+ XCZU9EG

(IN PS CLOCK CYCLES).

dFPGA
AW dFPGA

W dFPGA
B dFPGA

AR dFPGA
R dPS

Write dFPGA
Int

29 20 20 29 20 116 5

dPS
Read tConf

W tConf
R tQARMA tCheck tInt dPS

Int

92 20 15 10 5 5 40

today’s ARM’s PA implementation and its software support in
Linux.

Protection against kernel data leakages. In the Linux
support for ARM’s PA, a key is generated for each process and

am
m

un
iti

on
an

ag
ra

m
au

di
ob

ea
m

ba
si

cm
at

h
bi

tc
ou

nt
cj

pe
g

w
rb

m
p

cr
c

fil
te

rb
an

k
fm

re
f

gs
m

de
c

gs
m

en
co

de
hu

ff
de

c
hu

ff
en

c
in

se
rt

so
rt

lm
s

lu
dc

m
p

m
d5

m
in

ve
r

m
pe

g2
nd

es
po

w
er

w
in

do
w

ri
jn

da
el

de
c

ri
jn

da
el

en
c

sh
a

su
sa

n

0.01%
0.1%
1%

10%
100%

O
ve

rh
ea

d
%

Fig. 11. Percentage run-time overhead for each benchmark. Note that no
measurable overhead was recorded for some benchmarks.

stored into the process data structure. If an attacker is capable
of reading the kernel memory the PAC keys could be stolen.
With the improved key management strategy of PAC-PL, a
kernel data leakage is not sufficient to stole the PAC keys.
Indeed, the attacker must have access to the Secure World
to either retrieve PAC keys as a result of the hash function
running at S-EL1 or access the PAC-PL device registers.



Protection against attempts at forging PACs. Attacks that
aim at forging PACs may require a high number of attempts
before guessing the right PAC. For instance, when using a
software model in which a master process spawns several
workers by means of the fork() system call, the kernel
creates an exact copy of the process, which in the today’s
Linux support for ARM’s PA also means transferring the key
to the new process. If an attacker controls the worker, the at-
tacker can try to forge PAC with unlimited trials (e.g., workers
reply to remote requests and, when they crash, are replaced
by newer workers). In this scenario, PAC-PL easily allows
detecting an excessive number of failed PAC authentications
by means of the interrupt signal that is generated for each
failed authentication. For instance, the signal can be used by a
hypervisor to shutdown a Linux virtual machine under attack,
hence avoiding that the attack can propagate to more critical
software modules.

Limitations of this work. The PAC-PL accelerator can be
used to implement all the functionality available in ARM’s PA
implementation for ARMv8.3-A architectures. The prototype
GCC plugin developed for this work is however limited to
the protection of return addresses only, but it can be easily
extended to cope with other attack means such as function
pointers.

VII. RELATED WORK

Until a few years ago, CFI techniques were limitedly consid-
ered due to their significant overhead when lacking adequate
hardware support. Nevertheless, CFI techniques have been
investigated and implemented with a pure-software approach
since years. One of the first implementations within an OS was
released for Windows 8.1 in 2014 by Microsoft [23], which
focused on protecting indirect calls on invalid targets only.
This solution, however, is entirely realized in software; conse-
quently, the performance of a protected program experiences
a considerable slowdown. Furthermore, their implementation
was not robust versus a series of attacks [24]. Targeting
RTOSes, Walls et al. [25] proposed a software solution named
RECFISH that, differently from our solution, targets Cortex-R
microcontrollers and FreeRTOS and implements CFI through
the use of a privileged shadow-stack. RECFISH patches pre-
compiled binaries to add security instrumentation and inserts a
trampoline to jump to checks to enforce CFI. However, being
the shadow-stack privileged, performing operations onto it re-
quires RECFISH to jump into a privileged mode. Benchmarks
show that the execution time of indirect branches considerably
increases, with an approximately 30% increase in the total
execution time [25].

Christou et al. [26] extended the ISA of the Leon3 SPARC
V8 processor, a 32-bit open-source synthesizable processor, by
adding several instructions to check addresses during function
calls and returns. Their approach was implemented and tested
over SpecInt2000 benchmarks and was found to introduce
a limited runtime overhead (under 5%). Nevertheless, their
approach requires a hardware extension at the level of the
processor, which is practically possible only when using

particular soft cores. Differently, our approach complements
the processor capabilities with a module in PL.

Another remarkable work that leveraged FPGAs to im-
plement CFI was carried out by Maunero et al. [27]. They
presented a mechanism to secure bare-metal programs running
on FPGA-based platforms. In their approach, each program
to be executed is analyzed to extract the CFG. Then, a
compiler is required to generate a unique basic-block ID for
each control-flow transfer to be sent to the FPGA during the
execution where a device monitors each ID received, setting
a timeout. The processor is interrupted if the subsequent
ID is not expected or arrives after the timeout. While the
performance is outstanding, this solution comes with some
notable disadvantages. First, the configuration of the timer
may be complex to balance false and true positives. Second,
this approach is unsuitable for dynamic tasks because the
edge table must be present in the FPGA memory before the
process creation. Third, differently from our approach, it is a
custom technique that is not compatible with any PA support
in OS and compilers. From the introduction of PA support
in ARM processors, several works leveraged this security
mechanism. Denis-Courmont et al. [28] jointly applied PA and
a key management algorithms for protecting the Linux kernel
compiled for ARM platforms. Liljestrand et al. [29] proposed
a scheme for signing pointers that enforces integrity for code
and data pointers coupled with a runtime safety mechanism
that contrasts pointer-replacement attacks. The work was later
extended [30] to include a mechanism based on chained
message authentication codes to improve the system security
without requiring additional hardware support. Ferri et al. [31]
targeted virtualized systems and proposed a hypervisor-based
solution to improve key management and detect attacks using
ARM’s PA. To some extent, this work tries to extend the
preliminary results of Ferri et al., providing an FPGA-based
hardware support for some of their original proposals and an
evaluation.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented PAC-PL, a hardware-assisted solution
to enable CFI in FPGA-based platforms that lack of the
ARM’s PA support. PAC-PL is accompanied by compiler- and
OS-level support for GCC and Linux and enables improved
key management and attack detection strategies, with respect
to ARM’s PA, using ARM TrustZone and hypervisor tech-
nologies. A timing analysis for PAC-PL was also presented.
Experimental results with state-of-the-art benchmarks showed
that the approach can practically enable CFI with small run-
time overheads (85% of the tested benchmarks showed a
percentage overhead less than 10%) and negligible additional
footprint. Furthermore, experiments demonstrated the quality
of the analytical bounds and showed that PAC-PL accelerator
has minimal FPGA resource requirements (< 1% on a Xilinx
XCZU9EG). Future work includes the enhancement of the
software ecosystem for PAC-PL and the support of other
CFI mechanisms such as Branch Target Identification (BTI)
introduced in ARMv8.5-A processors [32].



REFERENCES

[1] V. van der Veen, N. dutt Sharma, L. Cavallaro, and H. Bos, “Memory
Errors: The Past, the Present, and the Future,” in Research in Attacks,
Intrusions, and Defenses, D. Balzarotti, S. J. Stolfo, and M. Cova, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 86–106.

[2] M. Kayaalp, M. Ozsoy, N. A. Ghazaleh, and D. Ponomarev, “Efficiently
Securing Systems from Code Reuse Attacks,” IEEE Transactions on
Computers, vol. 63, no. 5, pp. 1144–1156, May 2014.

[3] S. Designer, “Getting around non-executable stack (and fix),” 1997.
[Online]. Available: https://seclists.org/bugtraq/1997/Aug/63

[4] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières,
“CCFI: Cryptographically Enforced Control Flow Integrity,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 941–951. [Online].
Available: https://doi.org/10.1145/2810103.2813676

[5] I. Qualcomm Technologies, “Pointer Authentication on ARMv8.3: De-
sign and Analysis of the New Software Security Instructions,” Qual-
comm Technologies, Inc., Tech. Rep., 2017.

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-Flow
Integrity Principles, Implementations, and Applications,” ACM Trans.
Inf. Syst. Secur., vol. 13, no. 1, Nov. 2009. [Online]. Available:
https://doi.org/10.1145/1609956.1609960

[7] J. Pincus and B. Baker, “Beyond stack smashing: recent advances in
exploiting buffer overruns,” IEEE Security Privacy, vol. 2, no. 4, pp.
20–27, 2004.

[8] D. Brash, “Armv8-A architecture: 2016 additions,”
Arm Limited, Tech. Rep., 2016. [Online]. Avail-
able: https://community.arm.com/developer/ip-products/processors/b/
processors-ip-blog/posts/armv8-a-architecture-2016-additions

[9] C. Marinas, Memory Layout on AArch64 Linux, 2021. [Online].
Available: https://www.kernel.org/doc/html/latest/arm64/memory.html

[10] R. Avanzi, “The QARMA Block Cipher Family.” IACR Transactions on
Symmetric Cryptology, vol. 2017, no. 1, pp. 4–44, Mar. 2017. [Online].
Available: https://tosc.iacr.org/index.php/ToSC/article/view/583

[11] A. Limited, Arm® Architecture Reference Manual, jul 2021.
[12] N. Stephens, “Developments in the Arm A-Profile Architecture:

Armv8.6-A,” Arm Limited, Tech. Rep., 2019. [Online].
Available: https://community.arm.com/developer/ip-products/processors/
b/processors-ip-blog/posts/arm-architecture-developments-armv8-6-a

[13] G. O. Docs, Program Instrumentation Options. [Online].
Available: https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.
html\#index-fstack-protector

[14] F. Restuccia, M. Pagani, A. Biondi, M. Marinoni, and G. Buttazzo,
“Modeling and Analysis of Bus Contention for Hardware Accelerators
in FPGA SoCs,” in 32st Euromicro Conference on Real-Time Systems
(ECRTS 2020), 2020.

[15] F. Restuccia and A. Biondi, “Time-predictable acceleration of deep
neural networks on fpga soc platforms,” in 2021 IEEE Real-Time
Systems Symposium (RTSS). IEEE, 2021, pp. 441–454.

[16] C. Maiza, H. Rihani, J. M. Rivas, J. Goossens, S. Altmeyer, and R. I.
Davis, “A Survey of Timing Verification Techniques for Multi-Core
Real-Time Systems,” ACM Comput. Surv., vol. 52, no. 3, 2019.
[Online]. Available: https://doi.org/10.1145/3323212

[17] AMBA® AXI™ and ACE™ Protocol Specification, ARM, aRM IHI
0022D.

[18] H. Falk, S. Altmeyer, P. Hellinckx, B. Lisper, W. Puffitsch, C. Rochange,
M. Schoeberl, R. B. Sørensen, P. Wägemann, and S. Wegener,
“TACLeBench: A benchmark collection to support worst-case execution
time research,” in 16th International Workshop on Worst-Case Execution
Time Analysis, 2016.

[19] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia,
and M. B. Taylor, “CortexSuite: A Synthetic Brain Benchmark Suite,” in
International Symposium on Workload Characterization (IISWC), Oct.
2014.

[20] M. Werner, T. Unterluggauer, R. Schilling, D. Schaffenrath, and S. Man-
gard, “Transparent memory encryption and authentication,” in 2017 27th
International Conference on Field Programmable Logic and Applica-
tions (FPL), 2017, pp. 1–6.

[21] CLARE-Hypervisor by Accelerat. [Online]. Available: https://accelerat.
eu

[22] System Integrated Logic Analyzer v1.0, Xilinx, 2017, pG261.

[23] Microsoft, “Control Flow Guard,” 2015. [Online]. Available: https:
//docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

[24] J. Tang and T. M. T. S. Team. (2015) Exploring Control Flow Guard in
Windows 10.

[25] R. J. Walls, N. F. Brown, T. L. Baron, C. A. Shue, H. Okhravi,
and B. C. Ward, “Control-Flow Integrity for Real-Time Embedded
Systems,” in 31st Euromicro Conference on Real-Time Systems (ECRTS
2019), ser. Leibniz International Proceedings in Informatics (LIPIcs),
S. Quinton, Ed., vol. 133. Dagstuhl, Germany: Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2019, pp. 2:1–2:24. [Online].
Available: http://drops.dagstuhl.de/opus/volltexte/2019/10739

[26] G. Christou, G. Vasiliadis, E. Athanasopoulos, and S. Ioannidis, “Hard
edges: Hardware-based Control-Flow Integrity for Embedded Devices,”
in To be appear in 21th Proceedings of SAMOS International Conference
on Embedded Computer Systems, 2021.

[27] N. Maunero, P. Prinetto, G. Roascio, and A. Varriale, “A FPGA-based
Control-Flow Integrity Solution for Securing Bare-Metal Embedded
Systems,” in 2020 15th Design Technology of Integrated Systems in
Nanoscale Era (DTIS), 2020, pp. 1–10.

[28] R. Denis-Courmont, H. Liljestrand, C. Chinea, and J.-E. Ekberg, “Cam-
ouflage: Hardware-Assisted CFI for the ARM Linux Kernel,” in Pro-
ceedings of the 57th ACM/EDAC/IEEE Design Automation Conference,
ser. DAC ’20. IEEE Press, 2020.

[29] H. Liljestrand, T. Nyman, K. Wang, C. C. Perez, J.-E. Ekberg, and
N. Asokan, “PAC It up: Towards Pointer Integrity Using ARM Pointer
Authentication,” in Proceedings of the 28th USENIX Conference on
Security Symposium, ser. SEC’19. USA: USENIX Association, 2019,
p. 177–194.

[30] H. Liljestrand, T. Nyman, L. Gunn, J.-E. Ekberg, and N. Asokan, “PAC-
Stack: an Authenticated Call Stack,” in Proceedings of the 30th USENIX
Security Symposium. United States: USENIX : THE ADVANCED
COMPUTING SYSTEMS ASSOCIATION, aug 2020.

[31] G. Ferri, G. Cicero, A. Biondi, and G. C. Buttazzo, “Towards the Hyper-
vision of Hardware-based Control Flow Integrity for Arm Platforms,”
in ITASEC, 2019.

[32] M. Gretton-Dann, “Arm A-Profile Architecture
Developments 2018: Armv8.5-A,” Arm Limited, Tech.
Rep., 2018. [Online]. Available: https://community.arm.
com/developer/ip-products/processors/b/processors-ip-blog/posts/
arm-a-profile-architecture-2018-developments-armv85a


