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This talk in a nutshell

Linear-time methods for task splitting

Approximation scheme for C=D with very limited

utilization loss (<3%)

Load balancing algorithms for 

semi-partitioned scheduling

How to handle dynamic workload under semi-

partitioned scheduling with limited task re-allocations

and high schedulability performance (>87%)
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Dynamic real-time workload

Real-time tasks can join and leave the 

system dynamically

No a-priori knowledge of the workload

CPU 1 CPU 2

CPUs

𝜏1𝜏2𝜏3 𝜏4𝜏5
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Is dynamic workload relevant?

Many real-time applications do not have

a-priori knowledge of the workload

 Example: multimedia applications with Linux that 

require guaranteed timing performance 

 Cloud computing, multimedia, real-time databases,…

 Workload typically changes at runtime while the 

system is operating

 SCHED_DEADLINE scheduling class can be used 

to achieve EDF scheduling with reservations
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Is dynamic workload relevant?

Many real-time operating systems

provide syscalls to spawn tasks at run-

time

(SCHED_DEADLINE)
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Multiprocessor Scheduling

Most RTOSes for multiprocessors implement 

APA (Arbitrary Processor Affinities) schedulers

CPUs

𝜏1 𝜏2

𝜏3

Global 

Scheduling

Partitioned

Scheduling
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Global Scheduling

CPUs

CPU 1 CPU 2

𝜏1𝜏2𝜏3

Provides automatic load-balancing

(transparent) by construction
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Global Scheduling

Automatic load balancing

High run-time overhead

Execution difficult to predict

Difficult derivation of worst-case 
bounds

…
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Partitioned Scheduling

CPUs

6𝜏1 𝜏4 𝜏6

𝜏2

𝜏7𝜏5

𝜏3

Typically exploits a-priori knowledge

of the workload and an off-line partitioning phase
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Semi-Partitioned Scheduling

Builds upon partitioned scheduling

Tasks that do not fit in a processor are split

into sub-tasks

Anderson et al. (2005)

CPU 1 CPU 2

𝜏1 𝜏2

𝜏3
′

𝜏3
′′ 𝜏3

𝜏3
′

𝜏3
′′

𝜏3 may experience a migration

across the two processors
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C=D Splitting

Allows to split tasks into multiple chunks, with 

the first n-1 chunks at zero-laxity (C = D)

Based on EDF

Burns et al. (2010)

Example: two chunks Zero-laxity chunk

Last chunk

𝜏3 = (𝐶𝑖 , 𝐷𝑖 , 𝑇𝑖) = (30, 100, 100)

𝜏3
′ = (20, 20, 100)

𝜏3
′′ = (10, 80, 100)

Ci = Di

Di
′′ = Ti − Di

′
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C=D Splitting
Burns et al. (2010)

20

10

100

80

migration

Allows to split tasks into multiple chunks, with 

the first n-1 chunks at zero-laxity (C = D)

Based on EDF

𝜏3
′ = (20, 20, 100)

𝜏3
′′ = (10, 80, 100)
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Conceived for static workload

A very important result
Brandenburg and Gül (2016)

Empirically, near-optimal schedulability

(99%+) achieved with simple, well-known 

and low-overhead techniques

“Global Scheduling Not Required”

 Based on C=D Semi-Partitioned Scheduling

 Performance achieved by applying multiple 
clever heuristics (off-line)
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Semi-Partitioned Scheduling

More predictable execution

Reuse of results for uniprocessors

Excellent worst-case performance

Low overhead

A-priori knowledge of the workload

Off-line partitioning and splitting phase
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Global vs Semi-partitioned

More predictable execution

Reuse of results of 
uniprocessors

Excellent worst-case 
performance

Low overhead

Off-line partitioning and splitting
phase

A-priori knowledge of the 
workload

Automatic load balancing

High run-time overhead

Execution difficult to 
predict

Difficulty in deriving
worst-case bounds

Global Semi-Partitioned
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HOW TO MAINTAIN THE BENEFITS

OF SEMI-PARTITIONED 

SCHEDULING WITHOUT 

REQUIRING ANY OFF-LINE PHASE?

How to partition and split tasks online?
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This work

 This work considers dynamic workload consisting 

of reservations (budget, period)

 The consideration of this model is compliant with 

the one available in Linux (SCHED_DEADLINE), 

hence present in billions of devices around the 

world

 The workload is executed under C=D 

Semi-Partitioned Scheduling 

 Budget splitting

budget

zero-laxity chunk

remaining chunk
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C=D Budget Splitting

20

10

100

80

migration

𝜏′ = (20, 20, 100)

𝜏′′= (10, 80, 100)How to find a safe zero-

laxity budget?

𝜏= (budget = 30, period = 100)
to be split
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How to find the zero-laxity budget?
Burns et al. (2010)

 Iterative process based on QPA (Quick Processor-

demand Analysis) with high complexity (no bound 

provided by the authors)

 Also used by Brandenburg and Gül (2016)

QPAReduce 𝐶𝑖

no

yes

START

END

Pseudo-polynomial

(exponential if U=1)

Fixed-point

iteration
Potentially looping for a high number of times
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How to find the zero-laxity budget?
Burns et al. (2010)

 Iterative process based on QPA (Quick Processor-

demand Analysis) with high complexity (no bound 

provided by the authors)

 Also used by Brandenburg and Gül (2016)

QPAReduce 𝐶𝑖

no

yes

START

END

Pseudo-polynomial

(exponential if U=1)

Fixed-point

iteration
Potentially looping for a high number of times

Unsuitable to be performed online!



21

Constants depending on 

static task-set parameters

Our approach: approximated C=D

 In this work we proposed an approximate method

based on solving a system of inequalities

𝐶′ = 𝐷′ ≤ 𝐾1

𝐶′ = 𝐷′ ≤ 𝐾𝑁

𝐶′ = min(𝐾1, … , 𝐾𝑁)…

Main goal: Compute a safe bound for 
the zero-laxity budget in linear time

order of 

number of tasks
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Our approach: approximated C=D

Approach based on approximate demand-bound

functions

Some of them similar to those

proposed by Fisher et al. (2006)

+ theorems to obtain a closed-form formulation

The derivation of the closed-form solution has been

also mechanized with the Wolfram Mathematica tool

t

dbf(t)

How have we achieved the 
closed-form formulation?



23

Approximated C=D: Extensions

Extension 1: Iterative algorithm that refines 

the bound

Approximated C=D END
Repeats for a fixed

number k of refinements

Extension 2: Refinement on the precisions of 

the approximate dbfs

The approximation can be improved by:

Add a fixed number k

of discontinuities

O(k*n)

O(k*n)
t

dbf(t)
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Approximated C=D: Extensions

Extension 1: Iterative algorithm that refines 

the bound

Approximated C=D END
Repeats for a fixed

number k of refinements

Extension 2: Refinement on the precisions of 

the approximate dbfs

The approximation can be improved by:

Add a fixed number k

of discontinuities

O(k*n)

O(k*n)
t

dbf(t)

We found that significant improvements

can be achieved with just two iterations
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Experimental Study

Measure the utilization loss introduced by our 

approach with respect to the (exact) Burns et 

al.’s algorithm

Tested almost 2 Million of task sets over 

wide range of parameters

Burns et al.’s C=D 

Our approach

Task-set

𝜏𝑛𝑒𝑤

𝐶𝑛𝑒𝑤
∗

𝐶𝑛𝑒𝑤
′

𝑈𝑛𝑒𝑤 −
∗ 𝑈𝑛𝑒𝑤

′

to be split
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Representative Results

Extension 1 is effective for 

low utilization values

Extension 2 is effective for 

high utilization values

The lower the better

4 tasks

Increasing CPU load
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Representative Results

Extension 1 is effective for 

low utilization values

Extension 2 is effective for 

high utilization values

4 tasks

Utilization loss ~2% w.r.t. 

the exact algorithm
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Representative Results

Extension 1 is effective for 

low utilization values

Extension 2 is effective for 

high utilization values

4 tasks

13 tasks

The average utilization

loss decreases as the 

number of tasks increases
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Representative Results 

Utilization loss of the baseline 

approach reaches very low

values for n > 12

Same trend observed

for all utilization values

Utilization = 0.4

Utilization = 0.6
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HOW TO APPLY ON-LINE 

SEMI-PARTITIONING TO

PERFORM LOAD BALACING?
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Why do not use classical approaches?

Existing task-placement algorithms for semi-

partitioning would require reallocating many

tasks (they were conceived for static workload)

𝜏2 𝜏3

𝜏1

CPU 1 CPU 2

𝜏4
𝜏5 𝜏6

𝜏2𝜏3

𝜏1𝜏4

𝜏5

𝜏6

CPU 1 CPU 2

New allocationOld allocation

Impracticable to be performed on-line:

the previous allocation cannot be ignored!
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The problem

How to achieve high schedulability

performance with

 a very limited number of re-allocations; 

and

 keeping the mechanism as simple as

possible?

Focus on practical applicability
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Proposed approach

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

First try a simple bin packing heuristics (e.g., first-fit)
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Proposed approach

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

If not schedulable, try to split

𝜏4
𝜏4
′

𝜏4
′′

𝜏4
′ 𝜏4

′′
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Proposed approach

How to split?

take the maximum zero-laxity

budget across the processors

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

𝜏4

𝜏5

CPU 3 CPU 4

𝜏7
𝜏6

𝐶8
′,1 𝐶8

′,2 𝐶8
′,3

𝐶8
′,4

max𝐶8
′

𝜏8
𝜏8
′

𝜏8
′′



36

Proposed approach
Admission of a new reservation

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

𝜏4

𝜏5

CPU 3 CPU 4

𝜏7
𝜏6

1) Allocate the zero-laxity part 

according to the previous rule

2) Allocate the remaining part 

using a bin-packing heuristics

𝜏8
𝜏8
′

𝜏8
′′

𝜏8
′ 𝜏8

′′

𝑂(𝑚 ∗ 𝑛𝑀𝐴𝑋)
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𝜏3

CPU 2

𝜏4

𝜏5

CPU 3 CPU 4

𝜏7
𝜏6

Proposed approach
Exit of a reservation

𝜏2

𝜏1

CPU 1

Try to recompact split 

reservations to favor the 

admission of future workload

Recall: a property of C=D Scheduling is that there can be 

at most m split tasks

𝜏8
𝜏8
′

𝜏8
′′

𝜏8

𝑂(𝑛𝑀𝐴𝑋)
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Extensions

MS (Multi-split)

RPR (Reallocate Partitioned Reservation)

Split into multiple parts (>2)

TAS (Try all possible splits)

Try all possible combinations of allocations to favor

the admission via splitting

Move at most one reservation to favor the admission

of a new one

𝜏𝑖

𝜏𝑖
′

𝜏𝑖
′′

𝜏𝑖
′′′

𝑂(𝑚2 ∗ 𝑛𝑀𝐴𝑋)

𝑂(𝑚 ∗ 𝑛𝑀𝐴𝑋)

𝑂(𝑚2 ∗ 𝑛𝑀𝐴𝑋)
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Experiments

 Sequences of events have been generated to 

simulate the arrival of dynamic workload

𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡 = {𝐴𝑅𝑅𝐼𝑉𝐴𝐿, 𝐸𝑋𝐼𝑇}

 Tested generation scenarios that stress the system 

with high load demand

 For each generated sequence, the average 

accepted utilization of the proposed approach 

has been compared with G-EDF and P-EDF

 G-EDF admission test is performed by combining 4

polynomial-time tests (GFB, BAK, LOAD and I-BCL)
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Experiments

 Performance of multiprocessor scheduling algorithms are 

typically very sensitive to individual task utilizations

 Some generation parameters:

 [𝑈MIN, 𝑈MAX] = 0.01, 0.9

 𝑈𝐴𝑉𝐺 ∈ 0.1, 0.7

 𝜎 ∈ [0.05, 0.50]

 m ∈ {4, 8, 16, 32}

 To control average and variance of individual utilizations, 

reservations have been generated using the beta 

distribution

𝑈𝐴𝑉𝐺 𝑈𝑀𝐴𝑋𝑈𝑀𝐼𝑁

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
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Experiments

The higher the better

Increasing average task 

utilization
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Experiments

up to 40% of improvement over 

G-EDF
8 CPUs, utilization variance = 0.3

up to 25% of improvement over 

P-EDF
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Experiments

32 CPUs, utilization variance =0.1

Similar trends have been observed by 

varying other parameters

4 CPUs, utilization variance =0.5
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Additional Graphs

Graphs are available for both for Load Balancing

and C=D Approximation experiments

retis.sssup.it/~d.casini/sp-dyn/

Full set of results is freely available on-line
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Conclusions
We proposed a linear-time method for computing 

an approximation of the C=D splitting algorithm

 The approximation algorithm has been used to 

develop load-balacing mechanisms

 Two large-scale experimental studies have been

conducted:

 The splitting algorithm showed an average

utilization loss < 3% 

 The Load Balancing mechanisms allow keeping

the system load >87% with improvements up to 

40% over G-EDF and up to 25% to P-EDF
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Future Work

Finding better heuristics for load balancing

Ad-hoc mechanism for handling scheduling

transients

Support for elastic reservation to favor the 

admission of new workload

Synchronization issues

 Implementation in a real-time operating

systems (e.g., Linux under SCHED_DEADLINE)
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Thank you!
Daniel Casini

daniel.casini@sssup.it


