Semi-Partitioned Scheduling of Dynamic Real-Time Workload:
A Practical Approach Based On Analysis-driven Load Balancing

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo
Scuola Superiore Sant’Anna – ReTiS Laboratory
Pisa, Italy
This talk in a nutshell

Linear-time methods for task splitting

Approximation scheme for $C=D$ with very limited utilization loss (<3%)

Load balancing algorithms for semi-partitioned scheduling

How to handle dynamic workload under semi-partitioned scheduling with *limited task re-allocations* and high schedulability performance (>87%)
Dynamic real-time workload

- Real-time tasks can join and leave the system dynamically.

No a-priori knowledge of the workload
Is dynamic workload relevant?

- Many real-time applications do not have \textbf{a-priori} knowledge of the workload
 - Cloud computing, multimedia, real-time databases, ...

- Example: \textbf{multimedia applications} with Linux that require guaranteed timing performance
 - Workload typically changes \textbf{at runtime} while the system is operating
 - \textbf{SCHED_DEADLINE} scheduling class can be used to achieve \textbf{EDF scheduling} with \textbf{reservations}
Is dynamic workload relevant?

- Many real-time **operating systems** provide syscalls to spawn tasks at run-time

- Linux *(SCHED_DEADLINE)*

- VxWorks

- QNX
Most RTOSes for multiprocessors implement APA (Arbitrary Processor Affinities) schedulers.

- Global Scheduling
- Partitioned Scheduling
Global Scheduling

Provides **automatic load-balancing** *(transparent)* by construction
Global Scheduling

- Automatic load balancing
- High run-time overhead
- Execution difficult to predict
- Difficult derivation of worst-case bounds

...
Partitioned Scheduling

Typically exploits \textit{a-priori} knowledge of the workload and an \textit{off-line} partitioning phase
Semi-Partitioned Scheduling
Anderson et al. (2005)

- Builds upon partitioned scheduling
- Tasks that do not fit in a processor are split into sub-tasks

\[\tau_1 \quad \tau_2 \]

CPU 1
CPU 2

\[\tau_3 \]

\[\tau_3' \quad \tau_3'' \]

\[\tau_3 \]

\[\tau_3' \quad \tau_3'' \]

\(\tau_3 \) may experience a migration across the two processors
C=D Splitting
Burns et al. (2010)

- Allows to split tasks into **multiple chunks**, with the first n-1 chunks at **zero-laxity** (C = D)

- Based on **EDF**

Example: two chunks

\[\tau_3 = (C_i, D_i, T_i) = (30, 100, 100) \]

Zero-laxity chunk

\[C_i = D_i \]

\[\tau_3' = (20, 20, 100) \]

Last chunk

\[D_i'' = T_i - D_i' \]

\[\tau_3'' = (10, 80, 100) \]
C=D Splitting
Burns et al. (2010)

- Allows to split tasks into multiple chunks, with the first n-1 chunks at zero-laxity (C = D)

- Based on EDF

\[\tau_3' = (20, 20, 100) \]

\[\tau_3'' = (10, 80, 100) \]
A very important result
Brandenburg and Gül (2016)

“Global Scheduling Not Required”

Empirically, near-optimal schedulability (99%+) achieved with simple, well-known and low-overhead techniques

- Based on C=D Semi-Partitioned Scheduling
- Performance achieved by applying multiple clever heuristics (off-line)

Conceived for static workload
Semi-Partitioned Scheduling

- More predictable execution
- Reuse of results for uniprocessors
- Excellent worst-case performance
- Low overhead
- A-priori knowledge of the workload
- Off-line partitioning and splitting phase
<table>
<thead>
<tr>
<th>Global</th>
<th>Semi-Partitioned</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic load balancing</td>
<td>More predictable execution</td>
</tr>
<tr>
<td>High run-time overhead</td>
<td>Reuse of results of uniprocessors</td>
</tr>
<tr>
<td>Execution difficult to predict</td>
<td>Excellent worst-case performance</td>
</tr>
<tr>
<td>Difficulty in deriving worst-case bounds</td>
<td>Low overhead</td>
</tr>
<tr>
<td></td>
<td>Off-line partitioning and splitting phase</td>
</tr>
<tr>
<td></td>
<td>A-priori knowledge of the workload</td>
</tr>
</tbody>
</table>
HOW TO MAINTAIN THE BENEFITS OF SEMI-PARTITIONED SCHEDULING WITHOUT REQUIRING ANY OFF-LINE PHASE?

How to partition and split tasks online?
This work

- This work considers **dynamic workload** consisting of reservations (budget, period)

- The consideration of this model is compliant with the one available in **Linux** (SCHED_DEADLINE), hence present in **billions of devices** around the world

- The workload is executed under **C=D Semi-Partitioned Scheduling**

- **Budget splitting**
C=D Budget Splitting

\(\tau = (\text{budget} = 30, \text{period} = 100) \)

to be split

\(\tau' = (20, 20, 100) \)

How to find a safe zero-laxity budget?

\(\tau'' = \)
How to find the zero-laxity budget?

Burns et al. (2010)

- Iterative process based on QPA (Quick Processor-demand Analysis) with high complexity (no bound provided by the authors)

- Also used by Brandenburg and Gül (2016)

START

Reduce Ci

QPA

no

yes

END

Pseudo-polynomial (exponential if $U=1$)

Fixed-point iteration

Potentially looping for a high number of times
How to find the zero-laxity budget?
Burns et al. (2010)

- Iterative process based on QPA (Quick Processor-demand Analysis) with **high complexity** (no bound provided by the authors)

- Also used by Brandenburg and Gül (2016)

Unsuitable to be performed online!

1. Reduce Ci
2. QPA
 - yes → END
 - no → Fixed-point iteration

Potentially looping for a high number of times
Our approach: approximated $C=D$

Main goal: Compute a safe bound for the zero-laxity budget in linear time

In this work we proposed an approximate method based on solving a system of inequalities

\[C' = D' \leq K_1 \]
\[\ldots \]
\[C' = D' \leq K_N \]

Constants depending on static task-set parameters

\[C' = \min(K_1, \ldots, K_N) \]

order of number of tasks
Our approach: approximated $C=D$

How have we achieved the closed-form formulation?

- Approach based on approximate demand-bound functions

 Some of them similar to those proposed by Fisher et al. (2006)

- + theorems to obtain a closed-form formulation

The derivation of the closed-form solution has been also mechanized with the Wolfram Mathematica tool
The approximation can be improved by:

- **Extension 1:** Iterative algorithm that refines the bound
 - Repeats for a fixed number k of refinements

- **Extension 2:** Refinement on the precisions of the approximate dbfs
 - Add a fixed number k of discontinuities

Graph

- $\text{dbf}(t)$
- $O(k \cdot n)$
Approximated $C = D$: Extensions

The approximation can be improved by:

- **Extension 1:** Iterative algorithm that refines the bound
 - Repeats for a fixed number k of refinements

- **Extension 2:** Refinement on the precisions of the approximate dbfs
 - Add a fixed number k of discontinuities
 - $O(k \cdot n)$

We found that **significant improvements** can be achieved with **just two iterations**.
Experimental Study

- Measure the utilization loss introduced by our approach with respect to the (exact) Burns et al.’s algorithm.

- Tested almost 2 Million of task sets over wide range of parameters.
Representative Results

Extension 1 is effective for low utilization values

Extension 2 is effective for high utilization values

The lower the better

Increasing CPU load
Representative Results

Extension 1 is effective for low utilization values

Extension 2 is effective for high utilization values

Utilization loss ~2% w.r.t. the exact algorithm
Representative Results

Extension 1 is effective for low utilization values.
Extension 2 is effective for high utilization values.

The average utilization loss decreases as the number of tasks increases.
Representative Results

Utilization loss of the baseline approach reaches **very low** values for $n > 12$

Same trend observed for all utilization values.

Graph showing Utilization = 0.4 and Utilization = 0.6.
HOW TO APPLY ON-LINE SEMI-PARTITIONING TO PERFORM LOAD BALACING?
Why do not use classical approaches?

- Existing **task-placement** algorithms for semi-partitioning would require **reallocating** many tasks (they were conceived for **static** workload).

![Diagram showing task allocation and reallocation]

Impracticable to be performed on-line: the previous allocation cannot be ignored!
The problem

How to achieve high schedulability performance with

- a very limited number of re-allocations;
- and
- keeping the mechanism as simple as possible?

Focus on practical applicability
Proposed approach

First try a simple bin packing heuristics (e.g., first-fit)
Proposed approach

If not schedulable, try to split
Proposed approach

How to split?

\[\tau_8 \]

- take the maximum zero-laxity budget across the processors

\[\max C'_8 \]

\[C'_8, 1 \]

CPU 1
- \(\tau_1, \tau_2 \)

CPU 2
- \(\tau_3, \tau_4, \tau_5 \)

CPU 3
- \(\tau_6, \tau_7 \)

CPU 4

\[\max C'_8, 1 \]
Proposed approach

- Admission of a new reservation

1) Allocate the zero-laxity part according to the previous rule

2) Allocate the remaining part using a bin-packing heuristics

\[O(m \times n^{\text{MAX}}) \]
Proposed approach

Exit of a reservation

Try to recompress split reservations to favor the admission of future workload

\[O(n^{\text{MAX}}) \]

Recall: a property of C=D Scheduling is that there can be at most \(m \) split tasks
Extensions

- **TAS** (Try all possible splits)
 Try all possible combinations of allocations to favor the admission via splitting
 \[O(m^2 \times n^{MAX}) \]

- **MS** (Multi-split)
 Split into multiple parts (>2)
 \[O(m \times n^{MAX}) \]

- **RPR** (Reallocate Partitioned Reservation)
 Move at most one reservation to favor the admission of a new one
 \[O(m^2 \times n^{MAX}) \]
Experiments

- Sequences of events have been generated to simulate the arrival of dynamic workload

 \[\text{Event} = \{ \text{ARRIVAL, EXIT} \} \]

- Tested generation scenarios that stress the system with high load demand

- For each generated sequence, the average accepted utilization of the proposed approach has been compared with G-EDF and P-EDF

 - G-EDF admission test is performed by combining 4 polynomial-time tests (GFB, BAK, LOAD and I-BCL)
Experiments

- Performance of multiprocessor scheduling algorithms are typically very sensitive to individual task utilizations.

- To control average and variance of individual utilizations, reservations have been generated using the beta distribution.

- Some generation parameters:
 - \([U_{MIN}, U_{MAX}] = [0.01, 0.9]\)
 - \(U_{AVG} \in [0.1, 0.7]\)
 - \(\sigma \in [0.05, 0.50]\)
 - \(m \in \{4, 8, 16, 32\}\)
Experiments

The higher the better

Increasing average task utilization
Experiments

up to 40% of improvement over G-EDF

8 CPUs, utilization variance = 0.3

up to 25% of improvement over P-EDF
Experiments

32 CPUs, utilization variance = 0.1

4 CPUs, utilization variance = 0.5

Similar trends have been observed by varying other parameters
Additional Graphs

Full set of results is freely available on-line

retis.sssup.it/~d.casini/sp-dyn/

Load Balancing Experiments

Graphs are available for both for **Load Balancing** and **C=D Approximation** experiments
Conclusions

- We proposed a linear-time method for computing an approximation of the C=D splitting algorithm.
- The approximation algorithm has been used to develop load-balancing mechanisms.
- Two large-scale experimental studies have been conducted:
 - The splitting algorithm showed an average utilization loss < 3%.
 - The Load Balancing mechanisms allow keeping the system load >87% with improvements up to 40% over G-EDF and up to 25% to P-EDF.
Future Work

- Finding **better heuristics** for load balancing
- Ad-hoc mechanism for handling scheduling **transients**
- Support for **elastic reservation** to favor the admission of new workload
- **Synchronization** issues
- Implementation in a real-time operating systems (e.g., **Linux** under **SCHED_DEADLINE**)
Thank you!

Daniel Casini
daniel.casini@sssup.it