
1

Semi-Partitioned Scheduling of 

Dynamic Real-Time Workload:

A Practical Approach Based On Analysis-driven 

Load Balancing

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo

Scuola Superiore Sant’Anna – ReTiS Laboratory

Pisa, Italy



2

This talk in a nutshell

Linear-time methods for task splitting

Approximation scheme for C=D with very limited

utilization loss (<3%)

Load balancing algorithms for 

semi-partitioned scheduling

How to handle dynamic workload under semi-

partitioned scheduling with limited task re-allocations

and high schedulability performance (>87%)



3

Dynamic real-time workload

Real-time tasks can join and leave the 

system dynamically

No a-priori knowledge of the workload

CPU 1 CPU 2

CPUs

𝜏1𝜏2𝜏3 𝜏4𝜏5



4

Is dynamic workload relevant?

Many real-time applications do not have

a-priori knowledge of the workload

 Example: multimedia applications with Linux that 

require guaranteed timing performance 

 Cloud computing, multimedia, real-time databases,…

 Workload typically changes at runtime while the 

system is operating

 SCHED_DEADLINE scheduling class can be used 

to achieve EDF scheduling with reservations



5

Is dynamic workload relevant?

Many real-time operating systems

provide syscalls to spawn tasks at run-

time

(SCHED_DEADLINE)



6

Multiprocessor Scheduling

Most RTOSes for multiprocessors implement 

APA (Arbitrary Processor Affinities) schedulers

CPUs

𝜏1 𝜏2

𝜏3

Global 

Scheduling

Partitioned

Scheduling



7

Global Scheduling

CPUs

CPU 1 CPU 2

𝜏1𝜏2𝜏3

Provides automatic load-balancing

(transparent) by construction



8

Global Scheduling

Automatic load balancing

High run-time overhead

Execution difficult to predict

Difficult derivation of worst-case 
bounds

…



9

Partitioned Scheduling

CPUs

6𝜏1 𝜏4 𝜏6

𝜏2

𝜏7𝜏5

𝜏3

Typically exploits a-priori knowledge

of the workload and an off-line partitioning phase



10

Semi-Partitioned Scheduling

Builds upon partitioned scheduling

Tasks that do not fit in a processor are split

into sub-tasks

Anderson et al. (2005)

CPU 1 CPU 2

𝜏1 𝜏2

𝜏3
′

𝜏3
′′ 𝜏3

𝜏3
′

𝜏3
′′

𝜏3 may experience a migration

across the two processors



11

C=D Splitting

Allows to split tasks into multiple chunks, with 

the first n-1 chunks at zero-laxity (C = D)

Based on EDF

Burns et al. (2010)

Example: two chunks Zero-laxity chunk

Last chunk

𝜏3 = (𝐶𝑖 , 𝐷𝑖 , 𝑇𝑖) = (30, 100, 100)

𝜏3
′ = (20, 20, 100)

𝜏3
′′ = (10, 80, 100)

Ci = Di

Di
′′ = Ti − Di

′



12

C=D Splitting
Burns et al. (2010)

20

10

100

80

migration

Allows to split tasks into multiple chunks, with 

the first n-1 chunks at zero-laxity (C = D)

Based on EDF

𝜏3
′ = (20, 20, 100)

𝜏3
′′ = (10, 80, 100)



13

Conceived for static workload

A very important result
Brandenburg and Gül (2016)

Empirically, near-optimal schedulability

(99%+) achieved with simple, well-known 

and low-overhead techniques

“Global Scheduling Not Required”

 Based on C=D Semi-Partitioned Scheduling

 Performance achieved by applying multiple 
clever heuristics (off-line)



14

Semi-Partitioned Scheduling

More predictable execution

Reuse of results for uniprocessors

Excellent worst-case performance

Low overhead

A-priori knowledge of the workload

Off-line partitioning and splitting phase



15

Global vs Semi-partitioned

More predictable execution

Reuse of results of 
uniprocessors

Excellent worst-case 
performance

Low overhead

Off-line partitioning and splitting
phase

A-priori knowledge of the 
workload

Automatic load balancing

High run-time overhead

Execution difficult to 
predict

Difficulty in deriving
worst-case bounds

Global Semi-Partitioned



16

HOW TO MAINTAIN THE BENEFITS

OF SEMI-PARTITIONED 

SCHEDULING WITHOUT 

REQUIRING ANY OFF-LINE PHASE?

How to partition and split tasks online?



17

This work

 This work considers dynamic workload consisting 

of reservations (budget, period)

 The consideration of this model is compliant with 

the one available in Linux (SCHED_DEADLINE), 

hence present in billions of devices around the 

world

 The workload is executed under C=D 

Semi-Partitioned Scheduling 

 Budget splitting

budget

zero-laxity chunk

remaining chunk



18

C=D Budget Splitting

20

10

100

80

migration

𝜏′ = (20, 20, 100)

𝜏′′= (10, 80, 100)How to find a safe zero-

laxity budget?

𝜏= (budget = 30, period = 100)
to be split



19

How to find the zero-laxity budget?
Burns et al. (2010)

 Iterative process based on QPA (Quick Processor-

demand Analysis) with high complexity (no bound 

provided by the authors)

 Also used by Brandenburg and Gül (2016)

QPAReduce 𝐶𝑖

no

yes

START

END

Pseudo-polynomial

(exponential if U=1)

Fixed-point

iteration
Potentially looping for a high number of times



20

How to find the zero-laxity budget?
Burns et al. (2010)

 Iterative process based on QPA (Quick Processor-

demand Analysis) with high complexity (no bound 

provided by the authors)

 Also used by Brandenburg and Gül (2016)

QPAReduce 𝐶𝑖

no

yes

START

END

Pseudo-polynomial

(exponential if U=1)

Fixed-point

iteration
Potentially looping for a high number of times

Unsuitable to be performed online!



21

Constants depending on 

static task-set parameters

Our approach: approximated C=D

 In this work we proposed an approximate method

based on solving a system of inequalities

𝐶′ = 𝐷′ ≤ 𝐾1

𝐶′ = 𝐷′ ≤ 𝐾𝑁

𝐶′ = min(𝐾1, … , 𝐾𝑁)…

Main goal: Compute a safe bound for 
the zero-laxity budget in linear time

order of 

number of tasks



22

Our approach: approximated C=D

Approach based on approximate demand-bound

functions

Some of them similar to those

proposed by Fisher et al. (2006)

+ theorems to obtain a closed-form formulation

The derivation of the closed-form solution has been

also mechanized with the Wolfram Mathematica tool

t

dbf(t)

How have we achieved the 
closed-form formulation?



23

Approximated C=D: Extensions

Extension 1: Iterative algorithm that refines 

the bound

Approximated C=D END
Repeats for a fixed

number k of refinements

Extension 2: Refinement on the precisions of 

the approximate dbfs

The approximation can be improved by:

Add a fixed number k

of discontinuities

O(k*n)

O(k*n)
t

dbf(t)



24

Approximated C=D: Extensions

Extension 1: Iterative algorithm that refines 

the bound

Approximated C=D END
Repeats for a fixed

number k of refinements

Extension 2: Refinement on the precisions of 

the approximate dbfs

The approximation can be improved by:

Add a fixed number k

of discontinuities

O(k*n)

O(k*n)
t

dbf(t)

We found that significant improvements

can be achieved with just two iterations



25

Experimental Study

Measure the utilization loss introduced by our 

approach with respect to the (exact) Burns et 

al.’s algorithm

Tested almost 2 Million of task sets over 

wide range of parameters

Burns et al.’s C=D 

Our approach

Task-set

𝜏𝑛𝑒𝑤

𝐶𝑛𝑒𝑤
∗

𝐶𝑛𝑒𝑤
′

𝑈𝑛𝑒𝑤 −
∗ 𝑈𝑛𝑒𝑤

′

to be split



26

Representative Results

Extension 1 is effective for 

low utilization values

Extension 2 is effective for 

high utilization values

The lower the better

4 tasks

Increasing CPU load



27

Representative Results

Extension 1 is effective for 

low utilization values

Extension 2 is effective for 

high utilization values

4 tasks

Utilization loss ~2% w.r.t. 

the exact algorithm



28

Representative Results

Extension 1 is effective for 

low utilization values

Extension 2 is effective for 

high utilization values

4 tasks

13 tasks

The average utilization

loss decreases as the 

number of tasks increases



29

Representative Results 

Utilization loss of the baseline 

approach reaches very low

values for n > 12

Same trend observed

for all utilization values

Utilization = 0.4

Utilization = 0.6



30

HOW TO APPLY ON-LINE 

SEMI-PARTITIONING TO

PERFORM LOAD BALACING?



31

Why do not use classical approaches?

Existing task-placement algorithms for semi-

partitioning would require reallocating many

tasks (they were conceived for static workload)

𝜏2 𝜏3

𝜏1

CPU 1 CPU 2

𝜏4
𝜏5 𝜏6

𝜏2𝜏3

𝜏1𝜏4

𝜏5

𝜏6

CPU 1 CPU 2

New allocationOld allocation

Impracticable to be performed on-line:

the previous allocation cannot be ignored!



32

The problem

How to achieve high schedulability

performance with

 a very limited number of re-allocations; 

and

 keeping the mechanism as simple as

possible?

Focus on practical applicability



33

Proposed approach

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

First try a simple bin packing heuristics (e.g., first-fit)



34

Proposed approach

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

If not schedulable, try to split

𝜏4
𝜏4
′

𝜏4
′′

𝜏4
′ 𝜏4

′′



35

Proposed approach

How to split?

take the maximum zero-laxity

budget across the processors

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

𝜏4

𝜏5

CPU 3 CPU 4

𝜏7
𝜏6

𝐶8
′,1 𝐶8

′,2 𝐶8
′,3

𝐶8
′,4

max𝐶8
′

𝜏8
𝜏8
′

𝜏8
′′



36

Proposed approach
Admission of a new reservation

𝜏2
𝜏3

𝜏1

CPU 1 CPU 2

𝜏4

𝜏5

CPU 3 CPU 4

𝜏7
𝜏6

1) Allocate the zero-laxity part 

according to the previous rule

2) Allocate the remaining part 

using a bin-packing heuristics

𝜏8
𝜏8
′

𝜏8
′′

𝜏8
′ 𝜏8

′′

𝑂(𝑚 ∗ 𝑛𝑀𝐴𝑋)



37

𝜏3

CPU 2

𝜏4

𝜏5

CPU 3 CPU 4

𝜏7
𝜏6

Proposed approach
Exit of a reservation

𝜏2

𝜏1

CPU 1

Try to recompact split 

reservations to favor the 

admission of future workload

Recall: a property of C=D Scheduling is that there can be 

at most m split tasks

𝜏8
𝜏8
′

𝜏8
′′

𝜏8

𝑂(𝑛𝑀𝐴𝑋)



38

Extensions

MS (Multi-split)

RPR (Reallocate Partitioned Reservation)

Split into multiple parts (>2)

TAS (Try all possible splits)

Try all possible combinations of allocations to favor

the admission via splitting

Move at most one reservation to favor the admission

of a new one

𝜏𝑖

𝜏𝑖
′

𝜏𝑖
′′

𝜏𝑖
′′′

𝑂(𝑚2 ∗ 𝑛𝑀𝐴𝑋)

𝑂(𝑚 ∗ 𝑛𝑀𝐴𝑋)

𝑂(𝑚2 ∗ 𝑛𝑀𝐴𝑋)



39

Experiments

 Sequences of events have been generated to 

simulate the arrival of dynamic workload

𝑟𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡 = {𝐴𝑅𝑅𝐼𝑉𝐴𝐿, 𝐸𝑋𝐼𝑇}

 Tested generation scenarios that stress the system 

with high load demand

 For each generated sequence, the average 

accepted utilization of the proposed approach 

has been compared with G-EDF and P-EDF

 G-EDF admission test is performed by combining 4

polynomial-time tests (GFB, BAK, LOAD and I-BCL)



40

Experiments

 Performance of multiprocessor scheduling algorithms are 

typically very sensitive to individual task utilizations

 Some generation parameters:

 [𝑈MIN, 𝑈MAX] = 0.01, 0.9

 𝑈𝐴𝑉𝐺 ∈ 0.1, 0.7

 𝜎 ∈ [0.05, 0.50]

 m ∈ {4, 8, 16, 32}

 To control average and variance of individual utilizations, 

reservations have been generated using the beta 

distribution

𝑈𝐴𝑉𝐺 𝑈𝑀𝐴𝑋𝑈𝑀𝐼𝑁

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒



41

Experiments

The higher the better

Increasing average task 

utilization



42

Experiments

up to 40% of improvement over 

G-EDF
8 CPUs, utilization variance = 0.3

up to 25% of improvement over 

P-EDF



43

Experiments

32 CPUs, utilization variance =0.1

Similar trends have been observed by 

varying other parameters

4 CPUs, utilization variance =0.5



44

Additional Graphs

Graphs are available for both for Load Balancing

and C=D Approximation experiments

retis.sssup.it/~d.casini/sp-dyn/

Full set of results is freely available on-line



45

Conclusions
We proposed a linear-time method for computing 

an approximation of the C=D splitting algorithm

 The approximation algorithm has been used to 

develop load-balacing mechanisms

 Two large-scale experimental studies have been

conducted:

 The splitting algorithm showed an average

utilization loss < 3% 

 The Load Balancing mechanisms allow keeping

the system load >87% with improvements up to 

40% over G-EDF and up to 25% to P-EDF



46

Future Work

Finding better heuristics for load balancing

Ad-hoc mechanism for handling scheduling

transients

Support for elastic reservation to favor the 

admission of new workload

Synchronization issues

 Implementation in a real-time operating

systems (e.g., Linux under SCHED_DEADLINE)



47

Thank you!
Daniel Casini

daniel.casini@sssup.it


