Deep Neural Networks for Safety-Critical Applications: Vision and Open Problems

Daniel Casini, Alessandro Biondi, Giorgio Buttazzo

ReTiS Lab, Scuola Superiore Sant’Anna, Pisa, Italy
Motivations

1. Currently, many car manufacturers are tackling the race towards autonomous cars.

2. Huge improvements in DNN accuracy for many tasks (e.g. image classification).
Currently, many car manufacturers are tackling the race towards autonomous cars.

DNNs may be useful for achieving an autonomous car! But there are many issues...

Huge improvements in DNN accuracy for many tasks (e.g. image classification)
Motivations

But not only autonomous driving...

• DNNs can be also adopted for other types of autonomous systems (e.g., robotics, industrial control)
• Used to solve problems that are difficult to formalize by a set of rules.

Problems that depend on too many details are learned by direct experience

• Neural Networks imitate the way our brain works
Neural Networks

• Neural Networks consist of a set of neurons, often organized into layers

• Neurons are connected to each other by synaptic weights

• They are used for many different purposes, as speech recognition, image processing, weather forecast, etc.
Supervised Learning

• They can learn "by examples" to associate input-output pairs

• Example: Before training

<table>
<thead>
<tr>
<th>Input</th>
<th>Desired Output</th>
<th>Actual Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Red Semaphore</td>
<td>Car</td>
</tr>
</tbody>
</table>

Incorrect Classification!
Supervised Learning

- The **training algorithm** regulates the internal parameters (i.e., weights) of the network for producing the expected output.

Example: After training

<table>
<thead>
<tr>
<th>Input</th>
<th>Desired Output</th>
<th>Actual Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Red Semaphore</td>
<td>Red Semaphore</td>
</tr>
</tbody>
</table>

Correct!
The ILSVRC Challenge is a competition held from 2010 in which networks compete in classifying objects from images to labels, with 1000 possible categories.

Training set: 1.2 million images (1,000 categories)

Test set: 150,000 images
Are DNNs good enough?

The winning network of 2017 (SENet), achieved an accuracy of 97.74%

Deep Neural Networks in Safety

Critical Scenarios:

1. Certification Issues
Certification Issues

- Deep Neural Networks do not have a well-defined behavior

- Their results are difficult to be replicated (e.g., changing few pixels of an image may lead to different results)

Huge problem for certification!
Certification Issues

• Deep Neural Networks do not have a well-defined behavior

• Their results are difficult to be replicated (e.g., changing few pixels of an image may lead to different results)

How to support DNNs in a safety-critical context to build a system that can be certified?

Huge problem for certification!
IDEA: Match each DNN with a corresponding algorithm based on hard computing (e.g., a convolution filter) to monitor their behavior and redirect the actuation to safe actions in case of detected misbehavior.
IDEA: Match each DNN with a corresponding algorithm based on hard computing (e.g., a convolution filter) to monitor their behavior and redirect the actuation to safe actions in case of detected misbehavior.
Example of safe action

IDEA: Match each DNN with a corresponding algorithm based on hard computing (e.g., a convolution filter) to monitor their behavior and redirect the actuation to safe actions in case of detected misbehavior.

Safe action: stop the car in an empty space.
Redundant Neural Networks

The average-case behavior can be improved by inserting redundant neural networks, based on different models or trained with a different algorithm.
Redundant Neural Networks

The **average-case** behavior can be improved by inserting *redundant* neural networks, based on different models or trained with a different algorithm.

Which type of *supervision algorithms* are needed to detect wrong outputs and redirect actuation to *safe actions*?
Deep Neural Networks in Safety
Critical Scenarios:

2. Security and Isolation
• A DNN is a **complex** software, exposed to security threats

• What if an **attacker** exploits the **weakness** of a DNN to take control of the **steering system**?
Security and Isolation

• A DNN is a complex software, exposed to security threats

• What if an attacker exploits the weakness of a DNN to take control of the steering system?

How to avoid that the complexity of DNNs may lead to security threats for a safety critical system running on top of a shared platforms?
A hypervisor-based solution

IDEA: Divide a multicore heterogeneous platform in two domains

Safety-critical

Multicore Heterogeneous Platform

Hypervisor

Prone to attacks and malfunctioning

Deep Neural Networks

AUTOSAR

TensorFlow™ Caffe
A hypervisor-based solution

IDEA: Divide a multicore heterogeneous platform in two domains

- Which mechanisms have to be provided to allow them interacting while running on different OSes?

Multicore Heterogeneous Platform

Hypervisor

Prone to attacks and malfunctioning
Deep Neural Networks in Safety
Critical Scenarios:

3. Predictability
Predictability

KEY ISSUE: Guaranteeing that a real-time workload composed of DNNs is schedulable
 • Focus on the inference phase only

• A DNN is composed of a pipeline of layers, where each one implements an operation
• Many inference frameworks furtherly parallelize each layer

• The resulting computational activity can be represented by a Direct Acyclic Graph (DAG)

• A properly defined task model should also account for tensors (i.e., memory) exchanged among nodes
• Many inference frameworks furtherly parallelize each layer

• The resulting computational activity can be represented by a Direct Acyclic Graph (DAG)

• A properly defined task model should also account for tensors (i.e., memory) exchanged among nodes

Which is a suitable task model to describe and analyze the temporal behavior of DNNs?
Heterogeneous Platforms

• **Timing analysis** should also account for the **heterogeneity** of the underlying **hardware platform**

• DNN execution on **FPGA** is not yet fully supported by inference engines

 Dynamic partial reconfiguration can be exploited for accelerating complex layers
Heterogeneous Platforms

• Recently, ad hoc application specific integrated circuits have been recently produced (e.g., the Tensor Processing Unit by Google)

• They can be included in commercial heterogeneous platforms soon
Recently, ad hoc application specific integrated circuits have been recently produced (e.g., the Tensor Processing Unit by Google).

How to account for novel (highly heterogeneous) computing platforms?
Inference Engines

• DNNs are typically executed by means of inference engines
 • Inference engines can affect the execution of DNNs

Caffe

TensorFlow™
Google

theano

torch
Inference Engines

- DNNs are typically executed by means of inference engines
 - Inference engines can affect the execution of DNNs

How to account for inference engines that affect the DNN’s execution?
How Tensorflow works on CPUs?

- TensorFlow assigns ready nodes to threads of a thread pool (of globally-scheduled threads)
How Tensorflow works on CPUs?

- TensorFlow assigns ready nodes to threads of a thread pool (of globally-scheduled threads).

Best effort, conceived to maximize average-case performance and not to be predictable!
What we are doing?

Adding a layer for predictability in TensorFlow

• Extracting a computation model from DNNs, deriving precedence constraints, computation time of each node, memory exchanged, etc.

• Providing a predictable scheduling layer of nodes also aware of memory accesses

• Designing a partitioning scheme that considers producer-consumer relationships among nodes, for improving cache coherency

• Development of analysis techniques to assess schedulability of neural networks
Summary and conclusions

• Deep Neural Networks represent a promising technique for enacting autonomous driving, but...

 • their adoption in safety-critical scenarios presents many issues

• We focused on:
 • Certificability
 • Security and Isolation
 • Predictability
Deep Neural Networks represent a promising technique for enacting autonomous driving, but...

There is still a lot of work to do...

We focused on:
- Certificability
- Security and Isolation
- Predictability

Let's start!
Thank you!

Daniel Casini
daniel.casini@sssup.it