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Motivations
How to model the workload due to a Deep Neural Network?

How inference engines schedule Deep Neural Networks?

 Tensorflow with Eigen math library on CPUs

 Strongly parallel workload

 InceptionV3: powerful image recognition DNN

 Tensorflow: open-source machine learning framework by Google

Nodes typically perform mathematical computations (e.g., tensor convolutions) whose
implementation is platform-dependent and extremely parallel

DNN can be modeled as a 
direct acyclic graph (DAG)

Case study
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How Tensorflow works on CPUs?
TensorFlow (Eigen) assigns ready nodes to threads of a thread pool
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How Tensorflow works on CPUs?
TensorFlow (Eigen) assigns ready nodes to threads of a thread pool
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How Tensorflow works on CPUs?
Blocking implementation of fork-join parallelism:
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How Tensorflow works on CPUs?
Blocking implementation of fork-join parallelism: A sequential flow of execution that

forks in multiple parallel branches and 
and joins again in a sequential flow
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How Tensorflow works on CPUs?

void v1v5 ( ) {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Blocking implementation of fork-join parallelism:

void v_i ( ) { (i=2,3,4)

<execute v_i>

<signal>

}
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How Tensorflow works on CPUs?
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blocking on a condition variablesignaling the condition variable
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How Tensorflow works on CPUs?
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How Tensorflow works on CPUs?
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How Tensorflow works on CPUs?
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How Tensorflow works on CPUs?
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How Tensorflow works on CPUs?
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How Tensorflow works on CPUs?
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Blocking implementation of fork-join parallelism:

Reduction of the concurrency
available to execute functions!

Current analysis techniques not considering this effect would produce unsafe results

wait
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How Tensorflow works on CPUs?
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Blocking implementation of fork-join parallelism:

Target of this paper: 
how to analyze parallel real-time tasks implemented with 

thread pools and blocking on condition variables?

wait
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Deadlocks can also occur
Assume two instances are released concurrently*
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*Deadlocks are prevented in Tensorflow by serializing the execution of nodes blocking on condition variables
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wait
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Thread suspended
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Discussion
We have shown that thread pools and blocking synchronization 

may reduce performance

Can we then conclude that this implementation paradigm should be avoided in 
real-time systems? 

State-of-the-art analysis techniques do not consider this implementation 
paradigm and hence could lead to unsafe results!

NO:

• Unfortunately, these paradigms are commonly used in real implementations

• Not only Deep Neural Networks and Tensorflow, thread pools are 
commonly adopted also for cloud computing and web-services
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Model
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condition variable

Code executed after
being awakened
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Model
Nodes are assigned to types
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blocking-child

Limited-concurrency model

void v1v5 ( ) {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

Recall



25

Schedulability Analysis: intuition 

Partitioned Scheduling

Global Scheduling

An approximate response-time bound is
computed by leveraging the concept of 

available concurrency

Partitioning algorithm allowing to safely
re-use state-of-the-art analysis techniques

by isolating concurrent BF nodes

For additional details, please look at the paper

THREAD 1v1v4

v5

v2v3 THREAD 2

THREAD 3

v1v2v3v4v5

THREAD 1

THREAD 2

THREAD 3
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Avoiding deadlocks: intuition 

time

lower bound

Condition: Available concurrency > 0

Necessary condition for both global and partitioned scheduling

Sufficient for global scheduling More details in 
the paper
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Experimental Results

Goal: how much is the optimism incurred by analyzing parallel tasks with 

limited concurrency with state-of-the-art techniques?

 Based on synthetic task sets

𝒍𝒎𝒊𝒏 = 𝟑,𝐔 = 𝟐, 𝟖 𝐭𝐡𝐫𝐞𝐚𝐝𝐬, 𝟔 𝐭𝐚𝐬𝐤𝐬
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𝒍𝒎𝒊𝒏 = 𝟑,𝐔 = 𝟑, 𝟖 𝐭𝐡𝐫𝐞𝐚𝐝𝐬, 𝟖 𝐭𝐚𝐬𝐤𝐬

𝑙𝑚𝑎𝑥

 Each task has a lower bound to the
available concurrency in [𝒍𝒎𝒊𝒏, 𝒍𝒎𝒂𝒙]

Graceful degradation in the case of 
partitioned scheduling
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Pessimism due to the usage of lower-
bound to the available concurrency

Partitioned Scheduling

Global Scheduling
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Conclusions

Conditions for guaranteeing the 
absence of deadlocks

Schedulability analysis

Task model for analyzing parallel tasks implemented with thread pools

Experimental results
to assess the optimism incurred by state-of-the-art analyses when

parallel tasks are implemented with thread pools

Future work: New analysis approaches for parallel tasks with thread
pools

Design of partitioning algorithms aimed at optimizing
schedulability
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