
Analyzing Parallel Real-Time Tasks
Implemented with Thread Pools

Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo

ReTiS Lab, Scuola Superiore Sant’Anna, Pisa, Italy

2

Motivations
How to model the workload due to a Deep Neural Network?

How inference engines schedule Deep Neural Networks?

 Tensorflow with Eigen math library on CPUs

 Strongly parallel workload

 InceptionV3: powerful image recognition DNN

 Tensorflow: open-source machine learning framework by Google

Nodes typically perform mathematical computations (e.g., tensor convolutions) whose
implementation is platform-dependent and extremely parallel

DNN can be modeled as a
direct acyclic graph (DAG)

Case study

3

How Tensorflow works on CPUs?
TensorFlow (Eigen) assigns ready nodes to threads of a thread pool

Core 0 Core 1 Core 2 Core 3

Dispatcher

OS Scheduler

Thread 0 Thread 1 Thread 2 Thread 3

.

.

.

RunQueue

Nodes

.

.

.

.

.

.

.

.

.

4

How Tensorflow works on CPUs?
TensorFlow (Eigen) assigns ready nodes to threads of a thread pool

Dispatcher

OS Scheduler

.

.

.

RunQueue

Nodes

.

.

.

.

.

.

.

.

.

Core 0 Core 1 Core 2 Core 3

Thread 0 Thread 1 Thread 2 Thread 3
What if one of these
functions blocks on a
condition variable?

5

How Tensorflow works on CPUs?
TensorFlow (Eigen) assigns ready nodes to threads of a thread pool

Dispatcher

OS Scheduler

.

.

.

RunQueue

Nodes

Nodes are C++ Functions:
the OS is not directly
aware of them!

.

.

.

.

.

.

.

.

.

Core 0 Core 1 Core 2 Core 3

Thread 0 Thread 1 Thread 2 Thread 3
What if one of these
functions blocks on a
condition variable?

6

How Tensorflow works on CPUs?
Blocking implementation of fork-join parallelism:

7

How Tensorflow works on CPUs?
Blocking implementation of fork-join parallelism: A sequential flow of execution that

forks in multiple parallel branches and
and joins again in a sequential flow

8

How Tensorflow works on CPUs?

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

9

How Tensorflow works on CPUs?

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}
blocking on a condition variablesignaling the condition variable

10

How Tensorflow works on CPUs?

𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

𝑣15

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

11

How Tensorflow works on CPUs?

𝑣1𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

𝑣15

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

wait

12

How Tensorflow works on CPUs?

𝑣1𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

𝑣2

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣15

𝑣3

𝑣4

𝑣15

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Thread suspended

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

wait

13

How Tensorflow works on CPUs?

𝑣2

𝑣1𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

𝑣2

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣15

𝑣3

𝑣4

𝑣15

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Thread suspended

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

wait

14

How Tensorflow works on CPUs?

𝑣2

𝑣1

𝑣3

𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣15 𝑣3

𝑣4

𝑣15

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Thread suspended

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

wait

15

How Tensorflow works on CPUs?

𝑣2

𝑣1

𝑣3 𝑣4

𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣15 𝑣4𝑣15

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Thread suspended

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

wait

16

How Tensorflow works on CPUs?

𝑣2

𝑣1

𝑣3 𝑣4

𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣15

𝑣5

𝑣15

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Thread suspended

Blocking implementation of fork-join parallelism:

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

wait

17

How Tensorflow works on CPUs?

𝑣2

𝑣1 𝑣5

𝑣3 𝑣4

𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Thread suspended

Blocking implementation of fork-join parallelism:

Reduction of the concurrency
available to execute functions!

Current analysis techniques not considering this effect would produce unsafe results

wait

18

How Tensorflow works on CPUs?

𝑣2

𝑣1 𝑣5

𝑣3 𝑣4

𝑡ℎ1

𝑡ℎ2

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

time

Thread 1 Thread 2

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

Thread suspended

Blocking implementation of fork-join parallelism:

Target of this paper:
how to analyze parallel real-time tasks implemented with

thread pools and blocking on condition variables?

wait

19

Deadlocks can also occur
Assume two instances are released concurrently*

𝑣1𝑡ℎ1

𝑡ℎ2 𝑣1′

𝑣1

𝑣2

𝑣4

𝑣5𝑣3 𝑣1

𝑣2

𝑣4

𝑣5𝑣3′

′

′

′

′

Deadlock!

′

*Deadlocks are prevented in Tensorflow by serializing the execution of nodes blocking on condition variables

wait

wait

Thread suspended

Thread suspended

20

Discussion
We have shown that thread pools and blocking synchronization

may reduce performance

Can we then conclude that this implementation paradigm should be avoided in
real-time systems?

State-of-the-art analysis techniques do not consider this implementation
paradigm and hence could lead to unsafe results!

NO:

• Unfortunately, these paradigms are commonly used in real implementations

• Not only Deep Neural Networks and Tensorflow, thread pools are
commonly adopted also for cloud computing and web-services

21

Model

NB

NB

NB

NB

NB

BF

BC

BC

BJ

NB

Nodes are assigned to types

Limited-concurrency model

22

Model

NB

NB

NB

NB

NB

BF

BC

BC

BJ

NB

Nodes are assigned to types

non-blocking

blocking-fork
blocking-join

blocking-child

Limited-concurrency model

23

Model

NB

NB

NB

NB

NB

BF

BC

BC

BJ

NB

Nodes are assigned to types

non-blocking

blocking-fork
blocking-join

blocking-child

Limited-concurrency model

Code executed before
blocking on the

condition variable

Code executed after
being awakened

24

Model
Nodes are assigned to types

NB

NB

NB

NB

NB

BF

BC

BC

BJ

NB

non-blocking

blocking-fork
blocking-join

blocking-child

Limited-concurrency model

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

Recall

25

Schedulability Analysis: intuition

Partitioned Scheduling

Global Scheduling

An approximate response-time bound is
computed by leveraging the concept of

available concurrency

Partitioning algorithm allowing to safely
re-use state-of-the-art analysis techniques

by isolating concurrent BF nodes

For additional details, please look at the paper

THREAD 1v1v4

v5

v2v3 THREAD 2

THREAD 3

v1v2v3v4v5

THREAD 1

THREAD 2

THREAD 3

26

Avoiding deadlocks: intuition

time

lower bound

Condition: Available concurrency > 0

Necessary condition for both global and partitioned scheduling

Sufficient for global scheduling More details in
the paper

𝑣2

𝑣1 𝑣5

𝑣3 𝑣4

𝑡ℎ1

𝑡ℎ2

Reason in terms of available concurrency

1

2

A
va

ila
b

le

co
n

cu
rr

en
cy

void v1v5 () {

<execute v1>

<fork v2,v3,v4>

<wait for v2,v3,v4>

<execute v5>

}

𝑣1

𝑣2

𝑣4

𝑣5𝑣3

BF

BC BC BC

BJ

Thread suspended

void v_i () { (i=2,3,4)

<execute v_i>

<signal>

}

27

Experimental Results

Goal: how much is the optimism incurred by analyzing parallel tasks with

limited concurrency with state-of-the-art techniques?

 Based on synthetic task sets

𝒍𝒎𝒊𝒏 = 𝟑,𝐔 = 𝟐, 𝟖 𝐭𝐡𝐫𝐞𝐚𝐝𝐬, 𝟔 𝐭𝐚𝐬𝐤𝐬

S
c

h
e

d
u

la
b

ili
ty

ra
ti
o

𝑙𝑚𝑎𝑥

𝒍𝒎𝒊𝒏 = 𝟑,𝐔 = 𝟑, 𝟖 𝐭𝐡𝐫𝐞𝐚𝐝𝐬, 𝟖 𝐭𝐚𝐬𝐤𝐬

𝑙𝑚𝑎𝑥

 Each task has a lower bound to the
available concurrency in [𝒍𝒎𝒊𝒏, 𝒍𝒎𝒂𝒙]

Graceful degradation in the case of
partitioned scheduling

S
c

h
e

d
u

la
b

ili
ty

ra
ti
o

Pessimism due to the usage of lower-
bound to the available concurrency

Partitioned Scheduling

Global Scheduling

28

Conclusions

Conditions for guaranteeing the
absence of deadlocks

Schedulability analysis

Task model for analyzing parallel tasks implemented with thread pools

Experimental results
to assess the optimism incurred by state-of-the-art analyses when

parallel tasks are implemented with thread pools

Future work: New analysis approaches for parallel tasks with thread
pools

Design of partitioning algorithms aimed at optimizing
schedulability

Thank you!
Daniel Casini

daniel.casini@sssup.it

