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Abstract—In the last decade, deep learning techniques reached
human-level performance in several specific tasks, as image recog-
nition, object detection, and adaptive control. For this reason,
deep learning is being seriously considered by the industry to
address difficult perceptual and control problems in several
safety-critical applications (e.g., autonomous driving, robotics,
and space missions). However, at the moment, deep learning
software poses a number of issues related to safety, security, and
predictability, which prevent its usage in safety-critical systems.
This work proposes a visionary software architecture that allows
embracing deep learning while guaranteeing safety, security, and
predictability by design. To achieve this goal, the architecture
integrates multiple and diverse technologies, as hypervisors,
run-time monitoring, redundancy with diversity, predictive fault
detection, fault recovery, and predictable resource management.
Open challenges that stems from the proposed architecture are
finally discussed.

Index Terms—Deep learning, machine learning, deep neural
networks, safety-critical systems, safety, security, fault-tolerance,
predictability.

I. INTRODUCTION

In recent years, artificial intelligence (AI) made enormous
progresses thanks to the evolution of deep neural networks
(DNNs) and deep learning methodologies, which reached
human-level performance in several tasks, such as image
classification, object detection, and control. For these reasons,
several companies started considering the adoption of DNNs
as key components for increasing the perceptual and control
capabilities of autonomous systems, as advanced robots and
self-driving cars.

The software running in this type of systems must satisfy
several stringent requirements, especially when humans are
involved in the loop. Among them, the following properties
are particularly crucial:

« Certifiability. All safety-critical software components
must be written according to strict coding standards
(e.g., MISRA [1]) and certified by proper certification
authorities.

o Safety and fault tolerance. The system must prevent
catastrophic consequences on the user(s) and the envi-
ronment by proper mechanisms aimed at tolerating faults
and failures that could possibly occur in complex software
routines.

o Time predictability. These systems must react to events
in the environment within predefined time bounds, com-

puted at design time based on a set of performance
requirements. A control output delivered too late could
be useless or even dangerous (as an example, think of a
braking command in a self-driving car). This means that
such systems must be analyzable and verifiable not only
in the functional domain, but also in the time domain.

o Security. The software must be designed to protect the
system from cyber attacks that could exploit vulnerable
sections of the code to modify the software and take
control of the system. For instance, in a self-driving ve-
hicle, a cyber attack could alter the control flow of some
critical code to take control of the steering subsystem,
with potential catastrophic consequences.

Unfortunately, addressing such requirements is not straight-
forward when DNNs are used to process perceptual and
control functions, mainly for the following reasons:

e« DNNs are not 100% trustable. Although they proved
to achieve human-level performance in several tasks, as
image recognition and object detection, there can be
several unknown corner cases in which a DNN could
respond in a wrong way, especially when the input is
quite different from the examples provided during train-
ing, due to particular circumstances, as occurred in the
Tesla accident [2]. In addition, there are still anomalous
behaviors that are not fully understood yet, as the case
of adversarial images [3], which are properly generated
from normal images by altering the values of some pixels
to fool the network and cause a wrong desired output.
This technique could be used, for example, to attack an
autonomous vehicle by simply modifying a stop sign to
cause the DNN to fail in recognizing it.

o« DNN-based systems are commonly developed using
frameworks (e.g., TensorFlow and Caffe) that are not
compatible with the coding standards used for certify-
ing safety-critical software. In addition, when used for
object recognition and detection, DNNs process images
produced by cameras that are typically acquired by a rich
operating system (e.g., Linux or Android) that is far from
being certified.

¢ Most of the inference engines used for executing DNNs
are designed to push the average performance, but they
introduce large and unpredictable delays in worst-case
scenarios, especially when multiple DNNs need to be



executed concurrently on the same platform.

o DDNs and their related inference engines are complex
and large software systems that increase the attack sur-
face, making the overall system more vulnerable to cyber-
attacks. Furthermore, as the software infrastructure that
is typically required to infer DNNs is based on a rich
operating system, which may even be connected to the
Internet, the attack surface of a system can be even larger.

A. This work

To address the problems presented above, this work pro-
poses a visionary software architecture that allows embracing
DNNs to control safety-critical systems, while coping with
safety, security, and predictability issues, and enabling cer-
tification of the control software. To achieve this goal, the
proposed architecture combines the following technologies:

o Hypervisor technology: a hypervisor is used to isolate
components with different criticality and security levels,
hence allowing to protect the safety-critical components
from unexpected failures and cyber attacks by running
them in separated execution domains. In addition, the
hypervisor can be integrated with specific monitoring
units aimed at detecting crashes and anomalous behaviors
of the rich operating system running the DNNs, thus
activating proper recovering procedures.

e Redundancy and diversity: redundancy and diversity is
exploited to increase the robustness of deep learning
components and cope with possible faulty outputs of the
neural networks in corner-case situations.

o Predictive fault detection: digital-twin technology is em-
ployed to simulate a virtual replica of the system (digital
twin) in order to analyze the consequences of control ac-
tions into the future, to detect possible faults in advance.

o Fault recovery: a recovery mechanism is included to ex-
clude DNN-based controllers and switch to a simpler but
safer controller when a faulty control action is detected or
when the response of DNNss is judged to be non reliable.

o Predictability: a predictable DNN inference engine is
provided to reduce and control the interference among
multiple concurrent DNNs running on the same platform
with different execution rates.

The rest of the paper is organized as follows: Section II
briefly overviews the existing solutions; Section III presents
the proposed architecture; and Section IV discusses the open
challenges.

II. EXISTING SOLUTIONS: A BRIEF REVIEW

The literature on safe and secure software architectures is
quite vast: hence, due to lack of space, it is not possible to
report a detailed literature review in this paper. For this reason,
this section concentrates on previous work focused on DNNs
or autonomous systems.

In the past few years, several authors studied the robustness
and the safety of DNNs by addressing both testing and formal
verification issues. Testing mainly aims at finding corner cases
in which faulty outputs are produced, while verification aims
at determining whether a given property holds for the DNN,

providing a mathematical proof if this is the case, or a
counterexample if it is not. The interested reader can refer to
the survey by Huang et al. [4] for a detailed review of the state-
of-the-art of such techniques. Verification techniques [5] suffer
from severe scalability issues, which make them not practically
applicable to modern (complex) DNNs. Testing techniques
have been demonstrated to be applicable to modern DNNs [4],
[6]; however, they still require large-scale computations, and
it is still not clear how to generate suitable test cases that
can provide meaningful guarantees. In particular, it has been
noted [7] that the classical notion of coverage in software
engineering does not directly apply to DNNs: how to properly
quantify the testing coverage of DNNGs is still an open problem,
notwithstanding very interesting recent findings [8].

This work adopts a very different approach with respect
to those surveyed in [4]: complex DNNs are assumed to be
untrustworthy for being directly involved in the control loop
of a safety-critical system. Therefore, the authors of this paper
argue that they should be coupled with a certifiable, safe
controller in a (so called) simplex scheme [9] (also referred to
as safety executive pattern by other authors [10]), and deployed
by following redundancy paradigms with diversity. Note that
this does not mean that testing techniques for DNNs are not
useful in our approach, as they can help contain the faults
of DNNs anyway. Verification techniques may also be used
in our architecture to verify simpler neural components (see
Section IV).

Concerning timing predictability of DNNs, some authors
started addressing the problem by looking at the case of
GPU-based accelerators. Zhou et al. [11] proposed a fine-
grained pipelined scheduling of DNNs on GPUs with data
fusion for video streaming applications. Similarly, Yang et
al. [12] employed DNN decomposition and parallel pipelined
execution to improve the throughput of multi-camera detection
tasks for automated driving systems.

Limited attention has also been posed on system-level
and architectural aspects to leverage DNNs in safety-critical
systems while taking into account certification issues, appli-
cability to standards, and technical requirements such as the
compatibility of software stacks with critical components. For
instance, Luo et al. [13] studied some of these issues in the
context of autonomous driving, targeting the ISO 26262 safety
standard, but not explicitly focusing on DNNs.

Overall, to the best of our records, no efforts have been spent
in designing a comprehensive software architecture that allows
embracing deep learning while ensuring safety, security, and
predictability by design.

III. PROPOSED ARCHITECTURE

The software architecture proposed in this work is illustrated
in Figure 1 and is composed of five major components,
each described in one of the following sub-sections. It is
conceived as a general design approach to develop next-
generation control software that interacts with a physical plant
by means of actuators, and both legacy and modern high-
performance sensors (such as high-resolution 3D cameras).
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Fig. 1: Illustration of the proposed architecture.

A. Hypervisor-centric multi-OS infrastructure

The proposed architecture is built upon a bare-metal hyper-
visor that serves the execution of two execution domains: (i)
a non-critical domain, which is managed by a rich operating
system such as Linux; and (ii) a critical domain, which is man-
aged by a real-time operating system (RTOS). The hypervisor
and the critical domain represent the trusted computing base
of the architecture and are the only software components that
are assumed to be certified. The entire system must be fail-
safe or fail-operational as long as these two components are
not compromised, whereas the non-critical domain can crash
or be subject to cyber-attacks.

Most of the high-performance communication buses and
network interfaces, and in turn the corresponding high-
performance sensors connected via them, are only exposed to
the non-critical domain. The same holds for complex hardware
accelerators offered by the underlying computing platform
(e.g., GPUs). This design choice is driven by practical matters:
in most of the cases, the device drivers and the software stacks
required to manage these components are only available for
rich operating systems. Conversely, legacy sensors are exposed
to both the execution domains, as they are typically connected
via simpler peripherals (such as analog-to-digital converters)
that can be managed without requiring complex software.

Finally, the actuators that enable physical actions on the
controlled plant are only exposed to the critical domain, as they
may have a direct impact on the safety properties of the entire
system. Inter-domain communication channels are offered by
the hypervisor to implement safe, secure, and predictable
control loops.

B. Simplex architecture with redundancy

Two controllers are employed: a high-performance (HP)
controller based on DNNs, which executes in the non-critical
domain, and a simpler safe controller based on rigorous
engineering, which executes in the critical domain. To increase

its robustness and deal with corner-case scenarios that are
difficult to detect during testing, the HP controller is composed
of diverse replicas of DNN-based controllers. Each of such
DNN-based controllers may employ different DNNs built
with different models and/or trained with different data sets,
provided that they take the same inputs and produce the same
kind of outputs. Note that a DNN-based controller can either
produce outputs directly with a DNN or rely on DNNs to
perform a specific task in the control logic (e.g., perception).
The outputs of the HP controller are transmitted to the critical
domain by means of communication channels offered by the
hypervisor, where they are subject to voting and consolida-
tion to produce the actual commands for the actuators. The
safe controller is developed with well-established engineering
techniques, such as model-based design with hardware-in-the-
loop or simulation-based testing, and shall be able to keep the
physical plant in fail-safe or fail-operational conditions for any
input produced by the sensors.

A switching logic is employed in the critical domain to
provide the physical plant with either the control outputs
produced by the HP controller or those produced by the safe
controller. This design is conceived in such a way that the HP
controller is used in regular operating conditions (hopefully,
most of the time), while the system must switch to the safe
controller whenever the outputs produced by the HP controller
are judged not reliable or are not present (e.g., in the presence
of a crash or a denial-of-service attack in the non-critical
domain). Note that, in this way, DNN-based controllers can
be totally excluded from the certification process.

The main component that controls the switching logic is the
Sfunctional monitor. It takes in input the sensors exposed to the
critical domain and the outputs produced by the HP controller
to decide whether the latter may be dangerous for the physical
plant. It also implements a watchdog mechanism to detect
tardy (i.e., not delivered within control-dependent deadlines)
or missing outputs from the HP controller, to which it reacts by



switching to the safe controller. Finally, the functional monitor
must also be capable of deciding when it is possible to switch
back to the HP controller, paying attention at implementing
hysteresis mechanisms to avoid frequent switches and/or make
the system unstable [14]. The design of the functional monitor
is one of the major challenges in realizing the proposed
architecture — further details are provided in Section IV.
The switch to the safe controller can also be driven by a
look-ahead simulator and hypervisor-level monitors, which are
discussed in Sections III-C and III-D, respectively. All these
components that can trigger the switching logic are conceived
to be uncorrelated with each other, i.e., each of them is in
charge of independently detecting a certain class of faults with
some component-specific technique.

C. Look-ahead simulator

Digital-twin technology is employed as an additional com-
ponent of the architecture. It consists of a simulation of the
physical plant that is controlled by the same control logic
used for the real plant. The HP controller is replicated to be
stimulated by the inputs produced by the simulation. Indeed,
a different instance of the HP controller is required because
its internal state during simulations will be different from
the internal state maintained during the actual control of the
real plant. A replica of the voting and output consolidation
logic is also integrated within the simulator to process the
outputs produced by the replica of the HP controller. The
objective of this simulation environment is to predict the effect
of the outputs produced by the HP controller on the phys-
ical plant, with the purpose of detecting possible dangerous
control actions in advance. To do so, the simulator may also
need to test multiple possible evolutions of the system state
(corresponding to different future inputs). For these reasons,
this component is denoted as look-ahead simulator. When a
potentially-dangerous control action is detected in simulation,
the simulator triggers the switch to the safe controller to
exclude the HP controller, hence preventing a potential fault.
Note that a late fault detection by the functional monitor
may allow the safe controller to bring the plant into a fail-
safe state only. Conversely, if a fault is detected in advance
by the look-ahead simulator, it is possible to enable earlier
switches to the safe controller (before the intervention of the
functional monitor) that may allow the safe controller to keep
the plant in a fail-operational state. This clearly improves the
system performance in the presence of faults and simplifies
fault recovery.

The look-ahead simulator is implemented in the non-critical
domain because it relies on a replica of the HP controller. Note
that it may generate a considerable increase of the computing
workload due to the replication of the HP controller, which
in turn increases the required amount of computing resources
and hence the cost and the energy consumption of the system.
Furthermore, disposing of an accurate physical model of the
plant may not be possible for some application scenarios. For
these reasons, the look-ahead simulator is considered as an
optional component.

D. Hypervisor-level monitoring

Two run-time monitoring mechanisms are employed at the
hypervisor level to ensure safety and security guarantees,
namely the security monitor and the health monitor. The
security monitor is in charge of detecting cyber-attacks and
unauthorized intrusions in the system, with the purpose of
triggering recovery actions whenever one of such critical
events is identified. For instance, if control-flow integrity [15]
is enforced in the non-critical domain, the security monitor
can detect control-flow violations (i.e., illegal execution flows)
and react by forcing the switch to the safe controller in the
critical domain, independently of the functional monitor. The
detected attacks may also be logged by the security monitor by
relying on a secure storage. The health monitor supervises the
execution of the software domains and the operating conditions
of the underlying computing platform. Similarly to the security
monitor, it triggers recovery actions whenever failures are
detected. The typical tasks performed by the health monitor
include (i) the detection of software crashes in the non-critical
domain, to which it reacts by handing over the control of the
system to the critical domain; and (ii) the diagnostic test of
peripheral devices and memories.

E. Predictable DNN Inference Engine

As pointed out in the introduction, existing DNN frame-
works introduce computation delays that are difficult to pre-
dict, and leave room for several pathological scenarios that
lead to large delays compared to those exhibited in the
average case. When supporting the execution of multiple,
concurrent DNNs, possibly running at different rates, the
timing performance of DNNs can be even worse, especially
when the DNNs contend for hardware accelerators that do not
support fine-grained preemptions of ongoing computations or
a user-controllable sharing of the computing resources. These
issues are further exacerbated in the context of the proposed
architecture, when the computing workload related to DNNs is
increased due to redundancy and replication for the look-ahead
simulator.

For these reasons, a predictable DNN inference engine
is employed in the non-secure domain. It adopts (i) princi-
pled scheduling schemes for the computing resources, and
(ii) optimization-based mapping of the DNN layers to the
computing resources, with the purpose of guaranteeing worst-
case response-time bounds or provable long-tail latencies
for inference tasks. The timing guarantees provided by this
engine are used to configure the watchdog mechanism of the
functional monitor (see Sec. III-B).

IV. OPEN CHALLENGES

Realizing the architecture proposed in the previous section
requires overcoming several challenges, ranging from the
investigation of unexplored (or limitedly-explored) research
topics to the selection, composition, and configuration of
existing solutions. The authors of this paper believe that the
proposed architecture can serve as a research platform upon
which several problem-specific contributions can be proposed,



both in terms of theoretical/analytical results and system-level
mechanisms.

The design of the functional monitor is probably the most
challenging task. Existing solutions addressed the problem by
using pure control-theoretic approaches, such as the identi-
fication of a safe stability region of the plant [16], reacha-
bility analysis for hybrid systems [14], [17], or just reactive
approaches based on fault detection [18]. However, these so-
lutions may be either not applicable to complex plants, or lead
to poor performance (i.e., a too conservative behavior of the
functional monitor) such that DNN-based controllers become
ineffective. Therefore, the authors still consider this research
topic widely open. In particular, an interesting direction may
consist in investigating the design of functional monitors with
neural networks. Note that the task performed by the functional
monitor is intrinsically different from the one performed by
the DNN-based controllers, as its main objective is to detect
(or infer on the presence of) faulty outputs produced by
DNN-based controllers. The logic required to detect a faulty
control output may be far simpler than the one required to
compute a correct output. Therefore, simpler DNNs that are
fully-verifiable with formal techniques, or either testable with
a very high degree of coverage in a reasonable amount of
time may be devised to implement the functional monitor.
Furthermore, note that the inputs of DNN-based controllers
are just additional data that may or may not be used by the
functional monitor depending on the specific application (see
the connections at the top of Figure 1). For instance, when
the HP controller includes DNNs used for image perception,
the functional monitor could not take such images as inputs,
but just the control outputs produced by the HP controller and
other information coming from non-camera sensors.

Concerning the realization of the look-ahead simulator, the
key challenge consists in achieving accurate simulations of the
plant. Indeed, for complex application environments, it may be
extremely difficult to dispose of accurate models. Research
efforts should be spent to assess whether the adoption of
less accurate, but tractable, models can lead to reasonable
performance for specific application scenarios. The most rel-
evant performance metrics for the look-ahead simulator are
(1) the ratio of false positives, which should clearly be as
low as possible, and (ii) the prediction time with which it
is capable of detecting faults in advance, which should be
shorter than the one of the functional monitor. The look-ahead
simulator also originates challenges related to the efficiency of
its implementation. Indeed, it may necessitate to manage large
amounts of data (think of stereo high-resolution images and
point clouds) and multiple simulations (to cope with different
future inputs) in a limited amount of time. For these reasons, it
is either applicable in systems with highly powerful computing
platforms (e.g., when cost constraints are not particularly
relevant) or in resource-constrained systems with loose timing
constraints, such as industrial machineries for manufacturing
automation.

Despite relevant achievements have been reached in opti-
mizing the inference of DNNs, very limited efforts have been
devoted to improving their execution predictability. Due to
the large availability of software stacks, e.g., as those offered

by Nvidia, most proposals focused on the case of hardware
acceleration with GPUs. They however are known to suffer
from low predictability due to both the adopted scheduling
policies and the scarce information publicly available on
their internal structure. Future research should also assess
whether other technologies are more suited to predictably
infer DNNs. In particular, the authors believe that the use
of field-programmable gate arrays (FPGAs), especially those
that support dynamic partial reconfiguration [19], represent a
very flexible solution to enable the predictable acceleration of
DNNSs. Indeed, they allow deploying efficient and customized
accelerators that exhibit a very regular (and hence predictable)
execution behavior, while also offering the possibility of
adopting a fine-grained control of the memory traffic, which
in the case of DNNs tend to significantly affect the timing
performance of the accelerators due to the large amount of
data involved in modern DNN models.

Future research should also not ignore state-of-the-art op-
timization techniques for inferring DNNs, such as the use of
integer weights and layer fusion, when designing predictable
inference engines. For instance, in the case of GPUs, efficient
tools such as TensorRT [20] should not be ignored.

The selection and the configuration of hypervisor-level mon-
itoring mechanisms, and their integration with the switching
logic, is another system-level problem to be solved. The
support for restart-based fault-tolerance mechanisms, such as
the one proposed by Abdi et al. [21], is another interesting
direction to be investigated.

Finally, interesting research can be carried out by applying
the proposed architecture to specific application scenarios to
demonstrate its effectiveness in practical settings.
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