
Optimal Memory Allocation and Scheduling
for DMA Data Transfers under the LET Paradigm

Paolo Pazzaglia∗, Daniel Casini†‡, Alessandro Biondi†‡ and Marco Di Natale†‡
∗Saarland University, Saarbrücken, Germany †TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy

‡Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—The Logical Execution Time (LET) paradigm is increas-
ingly used to achieve predictable communications in modern multicore
automotive applications. Direct Memory Access (DMA) engines can
perform the data copies that are needed in a LET implementation on
behalf of the cores with improved parallelism and reduced overheads.
However, each DMA transfer operates on contiguous memory areas, and
the performance is strongly dependent on the allocation in memory
of the variables to be copied. This paper proposes a protocol to
perform LET communications with a DMA and presents an optimal
memory allocation scheme and scheduling using a mixed-integer linear
programming formulation. Experimental results are reported to compare
the performance of different communication approaches.

I. INTRODUCTION

Multicore platforms introduce many challenges in the design and
development of safe and time-predictable applications. Achieving
predictable and deterministic inter-core communication is one of
them. Tasks typically communicate by moving data across globally-
shared memories, which can be concurrently accessed from all cores.
The access to these memories is typically optimized for average-
case performance and not for time predictability. As a consequence,
contention on memory accesses may severely harm the application
timeliness, introduce nondeterminism, and possibly lead to faults.

The Logical Execution Time (LET) paradigm [1] recently re-
ceived renewed attention thanks to its capability of providing time-
deterministic communications on multicore platforms, and found
particularly relevant by automotive developers [2]. Under LET, com-
munications among tasks (i.e., memory accesses) shall occur at pre-
defined time instants (e.g., the beginning and the end of the tasks’
periods), hence providing an opportunity to avoid memory contention
by explicitly scheduling memory accesses [3].

A possible option to implement LET communications is to in-
troduce tasks running at the highest priority in each core that
copy data between a private core-local memory (e.g., a scratch-pad)
and the global memory [3]. This may not be a suitable solution
when dealing with emerging autonomous driving applications, which
require moving huge amounts of sensor data (e.g., camera images,
lidar data, etc.). In these cases, Direct Memory Access (DMA)
engines provide a convenient solution to manage communications,
while allowing tasks to run in parallel. To minimize the processor
intervention in programming the DMA, data needs to be allocated
in contiguous memory areas, thus giving rise to the need for an
optimized memory allocation for local and global memories.

This paper first proposes a DMA-based protocol to handle LET
communication in multicore applications. Its goal is to minimize the
data acquisition latency of each task, while addressing all causality
constraints. An optimal schedule of the communications, together
with the corresponding memory allocation scheme, is obtained us-
ing a mixed-integer linear programming formulation. Experimental
results are reported, to compare different communication strategies.

II. RELATED WORK

The LET execution model has been initially proposed in the
Giotto framework [1] to enhance the determinism of control software.

More recently, Hamann et al. [2] proposed the LET paradigm to
preserve the causality in execution order when porting an automotive
application from a single-core to a multi-core setting. Biondi and
Di Natale [3] described different variants of the LET paradigm and
implemented LET communication with predictable shared-memory
communication on an Aurix Tricore TC275 [4]. Pazzaglia et al. [5]
provided a formulation for the functional partitioning of a real-time
application using the LET paradigm. No previous work considered
LET with DMA engines. Orthogonally, several authors addressed the
problem of loading data in a core local memory with DMAs [6]–
[8]. For example, Rouxel et al. [9] proposed a method to reduce
the communication delays using a DMA under static scheduling,
without using LET. Other works considered the problem of bounding
the memory-space requirement and memory allocation algorithms for
hard real-time systems [10, 11]. Puaut and Pais [12] and Whitham and
Audsley [13] proposed methods to achieve a predictable allocation in
scratchpad memories. Overall, to the best of our knowledge, no prior
work jointly considered the usage of DMA engines to load data into
scratchpad memories for communicating tasks using LET.

III. SYSTEM MODEL

A. Platform and Application Model

The platform considered in this paper consists of a set P =
{P1, . . . , PN} of N identical cores. Each core Pk ∈ P has a private,
dual-ported [6, 8] local memory (e.g., a scratchpad). The platform
also includes a global memory shared by all cores. The set of all
memories is denoted withM = {M1, . . . ,MN ,MG}, where the first
N are local memories, and MG is global. A DMA engine performs
memory transfers between local and global memories. This setting
is representative of real commercial platforms used in automotive
systems, e.g., the AURIX TC2xx and AURIX TC3xx by Infineon [4],
or other high-end platforms when using cache lockdown.

The application consists of a set Γ = {τ1, . . . , τn} of periodic
real-time tasks, under partitioned scheduling. Each task τi is statically
assigned to one processor P(τi) ∈ P , and the subset of tasks assigned
to the k-th processor is denoted by Γk. Each task τi is characterized
by a period Ti and a relative (implicit) deadline Di =Ti. All tasks
are synchronously released at the system startup s0 = 0 and release
a potentially infinite sequence of instances called jobs. A task is
deemed schedulable when each of its jobs completes before the
release of the next job. Hereafter, we work under the hypothesis that
the entire task set Γ is schedulable. A job is said to be ready when
it has been released and all the data it requires (i.e., from inter-task
communications) has already been provided in its core-local memory.

The data acquisition deadline γi of a task τi is the latest possible
(relative) time when any job of τi may become ready (the time when
it is actually available for execution) to preserve schedulability of τi.
The maximum time elapsed between the release of any job of τi and
when it becomes ready is referred to as data acquisition latency and
denoted with λi. If the system is schedulable, we can safely restrict
our problem to a time interval [0, H), where H is the hyperperiod.
The set of release instants of τi in [0, H) is defined as Ti = {ti,0,

ti,1, . . . , ti,Ni−1}, with Ni = H/Ti, ti,0 = s0 and ti,j+1 = ti,j+Ti.
The set of the release instants of all tasks is T =

⋃n
i=1 Ti.

B. Communication Model

Tasks access data stored in memory slots called labels. Each label
`l is characterized by: (i) a size σl (in bytes), (ii) a memory Mk ∈M
to which `l is assigned to, and (iii) an address al,k in Mk at which
label `l is contiguously mapped (i.e., `l spans from al,k to al,k+σl).
The set of all labels in Mk is denoted as L(Mk). The labels read by
τi are in the set LR(τi), while those that are written are in the set
LW(τi). Labels may be read by multiple tasks but can be written
by one task only. Shared labels store data dynamically produced
by a task and consumed by another task, and encode functional
dependencies between tasks. When a label is shared among tasks
running on the same core, a double buffer mechanism [2] can be
used to guarantee deterministic communications. Conversely, when
labels are shared among tasks running on different cores, a different
approach is required. In this paper we focus on the latter case.

Given a producer task τp and a consumer task τc, such that
P(τp) 6= P(τc), LS(τp, τc) denotes the set of inter-core shared
labels, written by τp and read by τc. To avoid memory access
interference across cores, we require that an arbitrary task τi in
Pk accesses only labels mapped in Mk, and that all inter-core
shared labels are mapped in MG and not accessed directly by tasks.
Copies of each shared label are maintained in the local memories
to be accessed by the corresponding tasks. In detail, for any label
`l ∈ LS(τp, τc) accessed by multiple cores, two labels `l,p ∈ LW(τp)
and `l,c ∈ LR(τc) are provided in M(τp) and M(τc), respectively,
where M(τi) denotes the local memory accessed by τi.

The DMA is in charge of copying data between local copies (in
local memories) and shared labels (in global memory) implementing
inter-core communication. A communication cz(t) at time t is de-
noted as (i) W (τp, `l), if it represents a write from `l,p to the shared
label `l or (ii) R(`l, τc) if it represents a read from `l to `l,c. The
DMA copies involve different timing parameters due to data transfers
and programming overheads, which are presented in Section V.

IV. THE LET SEMANTICS

In the original LET definition (Giotto) [1], at the release instant
of every periodic instance of τi, its inputs are updated (LET read).
The task uses the input data to compute new output values, which
are made available (LET write) only at the end of the period. We
will refer hereafter to LET writes and reads as LET communications.
LET communications in Giotto are logically performed in zero-time.
The resulting behavior is deterministic in both time and value, and
causality is always enforced. In a practical implementation, it may be
convenient to perform at the start of each period both the LET writes
that were logically supposed to happen at the end of the previous
period and the reads for the current one. Such communication will
still be in agreement with the original LET semantics [1] as long as
all writes are performed before the reads that are casually related. By
introducing a partial order “≺” between communications the previous
statement is formally defined in Property 1.

Property 1 (LET communications to and from a task). A periodic
task τi ∈ Γ communicates according to LET if W (τi, `a) ≺
R(`b, τi) holds for any release time ti,x ∈ Ti and for every label
`b ∈ LS(τp, τi) read by τi and produced by a task τp, and every
label `a ∈ LS(τi, τc) written by τi and consumed by τc. All LET
communications must complete before executing the x-th job of τi.

In addition, causal dependencies between tasks communication
with LET must be satisfied. At any point in time, LET writes by a

producer task τp to a shared label `a ∈ LS(τp, τc) need to complete
before starting the corresponding LET reads for the corresponding
consumer task τc. This is formally defined in Property 2.

Property 2 (LET inter-task communications). W (τp, `a)≺R(`a, τc)
must hold for each pair of tasks τp, τc ∈ Γ such that LS(τp, τc) 6= ∅,
if ∃t ∈ Ti ∩ Tj , ∀`a ∈ LS(τp, τc).

When dealing with real platforms, the time needed to move
data across different memory slots and to execute tasks cannot be
neglected. Therefore, the hypothesis of zero-time communication
made in Giotto does not hold. All communications and executions
must then be properly scheduled to retain causality as assessed by the
LET semantics. To solve this issue, a strict order of execution for LET
communications is proposed in [1], satisfying both Property 1 and 2.
At any time instant t ∈ T when one or more LET communications
are required, this order is enforced with the following sequence:

1) First, each task instance released at t performs all its LET writes.
2) Then, each task instance released at t performs all its LET reads.
3) Finally, all task instances released at t are set as ready to execute.

In addition, communications issued at different time instants must
not overlap. This requirement is formally stated in Property 3.

Property 3. For each pair t1, t2 ∈ T with t1 < t2, all LET
communications required at time t1 are completed before t2.

When implemented on a real platform, LET communications are
usually managed by the CPU. For instance, the authors in [3] use
a dedicated task running with the highest priority to perform such
communications. In this way, any LET communication delays the
execution of any task, and the delay introduced by LET communi-
cations must be small enough to keep the system schedulable.

The implementation proposed in Giotto satisfies causality and
timing determinism. However, it has two fundamental issues. First,
any task τi released at time t is required to wait for all LET write
and read operations of all task instances that completed at t and start
at t, even if such communications have no causal dependencies with
τi. This may introduce unnecessary and possibly harming delays to
latency-sensitive tasks, especially if heavy communication is required.
Second, since the CPU is in charge of performing the copies, high
priority tasks need to wait for communications related to lower
priority tasks. The next section presents an alternative approach that
solves such issues by leveraging the parallelism introduced by DMA.

V. A NEW PROTOCOL FOR LET COMMUNICATIONS WITH DMA

In this section, we propose a new protocol to perform LET
communications. Our proposal allows for: (i) a limited interference
on the task executions, thanks to the usage of a DMA to offload
data transfers, and (ii) the possibility of finding a more flexible
order of LET communications with respect to the Giotto proposal,
guaranteeing an early release for latency-sensitive tasks. Indeed, when
LET communications can be performed in parallel to task execution,
it is possible to improve the responsiveness of latency-sensitive tasks.

In the proposed protocol, a single DMA engine is in charge of
moving inter-core shared data from a source memory Ms to a des-
tination memory Md (with Ms 6= Md). This choice allows avoiding
contention in accessing global memory. Since, during execution, tasks
access data from local memory only, such accesses are also free from
contention as long as the local memory is dual-ported. For each core
Pk ∈ P , a LET task τLET,k ∈ Γ is in charge of dispatching LET
communications by programming the DMA (a shared resource whose
usage is regulated via inter-core synchronization as in [3]). For each
data transfer, programming the DMA requires specifying: (i) the start
address of the data to be copied in the source memory Ms, (ii) the

Algorithm 1 Constructing sets of LET communications
1: function COMPUTE LETGROUP (t, τi)
2: GW (t, τi) = ∅, GR(t, τi) = ∅
3: for τj ∈ Γ do
4: for v ∈ N≥0, v < H∗i /Ti do
5: if ηi,j(v)W · Ti == t then
6: for `l ∈ LS(τi, τj) do
7: GW (t, τi) = GW (t, τi) ∪W (τi, `l)

8: if ηRj,i(v) · Ti == t then
9: for `l ∈ LS(τj , τi) do

10: GR(t, τi) = GR(t, τi) ∪R(`l, τi)

11: return GW (t, τi), GR(t, τi)

start address in the destination memory Md, (iii) the size of the data
transfer. By design of the DMA engine, each data transfer involves
contiguous portions of memory, both in Ms and in Md.

A. Grouping LET communications

Depending on the periods of the producer and consumer tasks,
it is possible to safely skip unnecessary LET reads and writes [3].
For example, a producer task τp that is oversampled with respect
to a consumer τc might skip some writes if that data is overwritten
before it is consumed. Similarly, a consumer τc that is oversampled
with respect to a producer τp may skip some of its reads if the
data has not changed since its previous activation. Considering any
pair of tasks τi, τp ∈ Γ such that LS(τp, τi) 6= ∅, the set of time
instants where a LET write by τi is required is defined in [3] as
{ηWp,i(v) · Ti | v ∈ N≥0}, with

ηWp,i(v) =

{
bv · Ti/Tpc if Tp < Ti,

v otherwise. (1)

Similarly, for any consumer task τc ∈ Γ such that LS(τi, τc) 6= ∅,
the set of time instants when a LET read is needed is defined [3] as
{ηRi,c(v) · Ti | v ∈ N≥0}, with

ηRi,c(v) =

{
dv · Ti/Tce if Tc > Ti,

v otherwise. (2)

The values defined by Eqs. (1) and (2) repeat every LCM(Ti, Tp)
and LCM(Ti, Tc), respectively [3]. By considering all the tasks τj ∈
Γ \ {τi} that have shared labels with τi, the LET writes and reads
issued by task τi will then repeat periodically with period H∗i :

H∗i = LCM
(
Ti,
{
Tj | LS(τi, τj) 6= ∅ ∨ LS(τj , τi) 6= ∅

})
. (3)

Building upon this formulation, we extract the necessary LET com-
munications of τi. Since H∗i is an integer divisor of H , we only need
to check the subset T ∗i ⊆ Ti of the release instants of τi that require at
least one LET communication in the interval [0, H∗i). The set of LET
writes and reads required by τi at t ∈ T ∗i are defined as GW (t, τi)
and GR(t, τi), respectively, and computed with Algorithm 1. The
algorithm works as follows. Given τi ∈ Γ and t ∈ T ∗i , for each
task τj ∈ Γ, it checks all the jobs with index v of τi in [0, H∗i)
(line 4). Then, it checks whether t coincides with a release time in
which a LET communication is needed (lines 5 and 8). If so, the
corresponding LET writes and reads for each label shared between
τi and τj are added to GW (t, τi) and GR(t, τi) (lines 7 and 10).

The set of all the LET writes and reads at time t that may involve
tasks in Γk are CW (t,Mk) =

⋃
τi∈Γk

GW (t, τi) and CR(t,Mk) =⋃
τi∈Γk

GR(t, τi), respectively. Finally, if T ∗ =
⋃
τi∈Γ T

∗
i , the set

of all the LET communications at time t ∈ T ∗ is defined as C(t) =⋃
τi∈Γ G

R(t, τi) ∪ GW (t, τi). Since all tasks are synchronously
released at time s0, the set of communications at each time t ∈ T ∗
is a subset of the set at time s0 [3], i.e., C(t) ⊆ C(s0), ∀t ∈ T ∗.

In our proposal, we group such LET communications in DMA
transfers. Each DMA transfer includes (a subset of) communications

occurring at time t that share the same source and destination
memory, and that will be performed all together. Since transferring
data using the DMA requires copying a set of contiguous labels from
the source Ms to the destination memory Md, a contiguous mapping
of the corresponding labels in Ms and Md is required. In our model,
one of those two memories is always MG, while the other is local.

A DMA transfer is formally defined as a tuple dg(t) = {Cg(t),
Lg(t),Ms,Md, ag,s, ag,d}, with t ∈ T ∗. Here, Cg(t) represents a set
of ordered communications taken either from CW (t,Mk) if Ms =
Mk and Md = MG, or CR(t,Mk) if Md = Mk and Ms = MG,
while Lg(t) represents the corresponding set of labels involved in the
data transfer, such that Lg(t) and their copies are all contiguously
allocated both in Ms and Md, and with the same order. The overall
amount of data moved by the DMA transfer dg(t) is

∑
`l∈Lg(t) σ`l .

Finally, ag,s and ag,d represent the start addresses at which labels in
Lg(t) are contiguously allocated in the source memory Ms and the
destination memory Md, respectively.

The index g of dg(t) represents the order of execution of the DMA
transfer. To preserve the LET semantics, the index values must be
carefully assigned so that both Properties 1 and 2 are always satisfied
∀t ∈ T ∗. The set of all the DMA transfers at t due to tasks from all
cores is denoted by D(t) =

⋃
g dg(t), such that

⋃
g Cg(t) = C(t) and⋂

g Cg(t) = ∅. The whole set of DMA transfers is D =
⋃
t≥0D(t).

B. LET Communication Protocol

For each t ∈ T ∗, let dg(t) ∈ D(t) be the data transfer with the
highest priority (i.e., order of execution), and τLET,k be the LET task
associated with the corresponding memory Mk, which is the source or
the destination local memory in dg(t). The proposed protocol behaves
according to the following rules.
R1 A task τi released at time t, is ready for execution when all the

LET communications in GW (t, τi) and GR(t, τi) are completed.
R2 τLET,k programs the DMA for dg(t) and suspends. Upon com-

pletion, an interrupt is raised to notify the termination of the
data transfer and to awaken one of the LET tasks to handle the
next transfer dg+1(t) (possibly running in a core Pp 6= Pk).

R3 When a DMA completion interrupt arrives, all the tasks for which
the data dependencies are satisfied by the completed g-th DMA
transfer are marked as ready.

We assume that at worst oDP time units are required to program a
regular DMA transfer. The interrupt service routine (ISR) notifying
the DMA completion requires up to oISR time units.

Fig. 1 shows an example of a schedule for LET communications
using a DMA with the protocol proposed in this work and with the
original order of the LET communications as specified in Giotto [1].
Inset (a) reports the memory layouts and the parameters charac-
terizing a DMA data transfer for a platform with two cores. Inset
(b) illustrates the communication schedule when using the proposed
protocol with an optimized re-ordering of the communications, while
inset (c) considers the Giotto approach [1], where tasks become ready
after all writes and reads are performed. Note that the schedule of
Fig. 1(b) provides a considerably smaller data acquisition latency for
task τ2, which may be essential to guarantee its schedulability.

The proposed protocol requires computing offline the set D of all
the DMA transfers, presented in Section V-A, and the knowledge
of the addresses in the global and local memories of each label.
Moving multiple labels with a single transfer reduces the overhead, as
it requires less processor intervention. This is beneficial for satisfying
data acquisition deadlines, while it complicates the label allocation
problem. Furthermore, a single DMA transfer may involve data
related to different tasks: this may cause additional delays to latency-
sensitive tasks, since tasks become ready as an effect of the DMA

������

���

������

��
��

��

��

��

�� , ��
write

�� , ��
read

��
write

��
write

��
read

��
read

��
write

��
read

�� � �� �� � �� �� � �� �� � ���� � �� �� � �� �� � �� �� � ��

�� �� ��

Memory layouts for ��, ��, and ��

(a)

LET communications� �� � �� �� � ��, �� � �� �� � ��, �� � �� � ��

��
��

��

��

��

��
��

��

��

��

�� ����

��

����

���� �� , ��
write

��
write

��
write

��
read

��
read

��
write

��
read

�� � �� �� � �� �� � �� �� � �� �� � �� �� � �� �� � ��

�� � �� � ��

�� � ��

�� , ��
read

Proposed Approach Giotto + DMA

���� ����������� ������� ������ ����������� ������� ��

��� ��� �� in processor ��, ��� ��� �� in processor ��.

(b) (c)

DMA completion ISR Release SuspensionDMA copyDMA programming ti is ready
��

Figure 1. Scheduling of LET communications using a DMA with the proposed approach (inset (b)) and with the original Giotto approach [1] (inset (c)).

completion interrupt (rule R3). Hence, the definition of a feasible
set of data transfers requires the satisfaction of multiple constraints,
which are managed by the optimization problem in Section VI.

C. Schedulability Analysis
Although it is not the main focus of this paper, we briefly discuss

how to leverage state-of-the-art results for analyzing the system
schedulability. For each core Pk ∈ P , this involves the schedulability
of: (i) the LET task τLET,k and, (ii) all the other tasks running
on Pk. Since τLET,k runs at the highest priority, it can be delayed
only by LET tasks of different cores contending for the DMA,
and by the ISR associated with the DMA completion interrupt. Its
schedulability is ensured by the optimization problem of Section VI
and is required for Property 3 to hold. Other non-LET tasks running
on Pk can be analyzed with state-of-the-art response-time analysis
techniques for periodic tasks with a release jitter given by the
data acquisition latency. Additionally, the LET task behaves as a
generalized multiframe task [3], where each job exhibits a segmented
self-suspending behavior [14] (rules R2 and R3). When computing
the high-priority interference, it is possible to model each execution
segment of τLET,k as an independent sporadic task [14].

VI. OPTIMIZATION PROBLEM

This section presents an MILP formulation to derive an optimal
memory allocation and an optimal schedule of DMA transfers under
the proposed LET protocol. The problem input is a task set statically
mapped on a multicore platform. Labels shared by tasks on different
cores are mapped in global memory, while the copies are mapped in
the local memories of the communicating tasks. We are interested in
finding the optimal mapping for the synchronous release instant s0,
when communications involve all labels and tasks, while ensuring
also that the mapping is feasible for each other set C(t), ∀t ∈ T ∗,
i.e., that all communications mapped in the same DMA data transfer
have all the corresponding labels contiguously mapped. The goals of
the MILP formulation are the following. (I) Determine which LET
communications are scheduled within each DMA transfer, and en-
force a contiguous allocation for labels involved in the same transfer
(Constraints 1-6). (II) Determine the order of the data transfers in
accordance with LET (Constraints 7, 8 and 10). (III) Ensure that the
data acquisition deadlines are not exceeded (Constraint 9).

A. MILP Variables
The main variables of the formulation are (B is the Boolean set):
• Adjacency of labels: ADk,a,b ∈ B is set to 1 if the address of label
`b is immediately below `a in Mk; otherwise it is set to 0.
• Communication in DMA transfer: CGz,g ∈ B is set to 1 if the

communication cz(s0) (being either R(`l, τi) or W (τi, `l)) is
mapped in the g-th DMA transfer; otherwise it is set to 0.

• Last LET Read of a Task: RGi,g ∈ B is set to 1 if the last LET
read of τi occurring at s0 is in the g-th DMA transfer; otherwise
it is set to 0.

The following are auxiliary variables.
• Position of label: PLk,a ∈ R is equal to the relative position of the

label `a mapped in Mk. PLk,a is defined such that ∀Mk ∈ M:∑
`a∈L(Mk) PLk,a =

∑|L(Mk)|
i=1 i.

• ID of Communication: CGIz ∈ R is equal to the index g of the
DMA transfer dg(s0) where the communication cz is mapped, i.e.,
∀cz(s0) ∈ C(s0), CGIz =

∑
g g · CGz,g .

• ID of last LET read: RGIi ∈ R is equal to the index g of the DMA
transfer dg(s0) where the last LET read of τi at s0 is mapped, i.e.,
∀τi ∈ Γ, RGIi =

∑
g g · RGi,g .

The latter variables represent integer values, but are relaxed as reals
to improve the performance of the optimization engine. In reality,
the variables CGIz and RGIi can only take integer values from
the equality constraints on them. Similarly the values of PLk,a are
constrained to integers only by Constraint 5.

B. Constraints on Mapping Labels and Communications

Each communication cz(t) ∈ C(t) must be mapped to exactly one
DMA data transfer. Since at C(s0) ⊇ C(t), ∀t ∈ T ∗, it is sufficient
to perform the following check (Constraint 1).

Constraint 1. ∀cz(s0) ∈ C(s0),
∑
g CGz,g = 1

Similarly, the variable representing the last read of task τi must be
mapped to exactly one DMA data transfer (Constraint 2).

Constraint 2. ∀τi ∈ Γ,
∑
g RGi,g = 1

Constraint 3 crucially enforces the definition of RGIi, stating that
the DMA data transfer index of the last LET read of a task at s0 is
computed as the maximum data transfer index of all its reads.

Constraint 3. ∀τi ∈ Γ, RGIi = maxcz(s0)∈GR(s0,τi)
CGIz

Constraint 4 states that, for each memory Mk ∈M, each label is
allocated immediately after only one label, and immediately before
another label. We provide dummy labels at the beginning and at the
end of the memory space to ensure the consistency of the constraint.

Constraint 4. ∀Mk ∈M,∀`a ∈ L(Mk) :∑
`b∈L(Mk)\`a ADk,a,b = 1 and

∑
`b∈L(Mk)\`a ADk,b,a = 1

To obtain an unique position address for each label, the following
constraint is also added.

Constraint 5. ∀Mk ∈M,∀`a, `b ∈ L(Mk), `a 6= `b :
PLk,a+1−(1−ADk,a,b)·M ≤ PLk,b ≤ PLk,a+1+(1−ADk,a,b)·M,
where M is a large positive constant value that represents infinity.

Constraint 5 uses a big-M formulation: if `b is mapped immediately
after `a in Mk (ADk,a,b = 1), then the position index of `b is equal
to the one of `a plus 1. If ADk,a,b = 0 the constraint has no effect.

Next, for each DMA transfer, all the labels involved must be
contiguous in the same order in both the source and destination mem-
ories. This is equivalent to check that, if any two communications
ci(t) and cj(t) are in the same DMA data transfer dg(t), then it
exists at least one label `c copied during dg(t) that is adjacent to
at least one of the two labels `a and `b involved in ci(t) and cj(t),
respectively, in both source and destination memories, where it can
even be `c = `a or `c = `b. This is formally enforced by Constraint 6.

Constraint 6. For each pair ci(t), cj(t) ∈ CW (t,Mx) (respectively,
ci(t), cj(t) ∈ CR(t,Mx)), with i 6= j and t ∈ T ∗, such that ci(t)
involves `a and cj(t) involves `b, ∀g ∈ {1, 2, . . .} it holds that

(CGi,g ∧ CGj,g) ≤
∑

cz(t)∈Z(t)

(
LGza,c,g + LGzb,c,g

)
where `c is the label involved in the z − th communication cz(t),
with Z(t) = CW (t,Mx) (respectively, Z(t) = CR(t,Mx)), and
LGz?,c,g = (ADG,?,c ∧ ADx,?,c ∧ CGz,g).

Proof. If ci(t) and cj(t), which move data from local memory Mx

to global memory MG or viceversa, are in the same DMA transfer
of index g, then the LHS of the inequality assumes value 1. From
the definition of DMA transfers, this requires that either (i) labels
`a and `b are mapped in adjacent memory slots, or (ii) at least one
between `a and `b is adjacent to another label `c that is part the g-th
DMA transfer. In both cases, the constraint enforces that there must
exist a communication cz(t) moving data in the very same direction
of ci(t) and cj(t), which involves a label `c. In this case, for the
constraint to hold, the RHS must also be set to at least 1. Note that
LGza,c,g = 1 if and only if label `c is mapped below `a in both Mx

and MG (ADG,a,c = ADx,a,c = 1) and cz(t) is in the DMA transfer
of index g (CGz,g = 1). This is consistent with the above points (i),
when `c = `b, and (ii). A dual reasoning can be made if LGzb,c,g = 1.

Conversely, if at least one between ci(t) and cj(t) is not in the
DMA transfer of index g, then the LHS of the inequality equals 0
and the constraint has no effect.

C. Constraints on LET Properties and Data Acquisition Deadlines

Property 1 (all LET writes of a task must complete before starting
its LET reads) is enforced through Constraint 7, by imposing an order
between the indexes of the corresponding DMA data transfers.

Constraint 7 (Property 1). ∀τi ∈ Γ, for each pair cw(s0) ∈
GW (s0, τi) and cr(s0) ∈ GR(s0, τi): CGIw < CGIr .

Again, checking the LET properties for all communications at s0

is sufficient to provide LET guarantees at all other communication
instants. Constraint 8 enforces Property 2, i.e., for each shared label,
the corresponding LET write must be completed before the LET read.

Constraint 8 (Property 2). For each pair cw(s0), cr(s0) ∈ C(s0)
with cw(s0) = W (τi, `l) and cr(s0) = R(`l, τj): CGIw < CGIr .

The communication latency λi is computed by accumulating the
delays of all the communications occurring until the last LET read
of τi. The temporal constraints on data acquisition deadlines at s0

are then guaranteed by Constraint 9.

Constraint 9. ∀τi ∈ Γ, λi ≤ γi, ∀g ∈ {1, 2, . . .} where

λi ≥ (RGIi+1)λO+ωc

(g∑
g=1

∑
cz(s0)∈C(s0)

σlCGz,g

)
−(1−RGi,g)M,

where `l is the label involved in the communication cz(s0).

Proof. Assume that the number of DMA transfers, occurring at s0

and performed before activating τi, is g. If this is not the case, the
last big-M term in the RHS makes the constraint inactive. When the
constraint is active, the number of DMA transfers at s0 until the
release of τi is given by RGIi + 1. Each DMA transfer generates a
(worst-case) overhead given by the programming and interrupt costs,
i.e., λO = oDP + oISR: this corresponds to the first term in the RHS.
The second term is the sum of sizes of the labels involved in the first
g DMA transfers, multiplied by the cost of each copy ωc.

Finally, Property 3 is enforced by Constraint 10, which states that
all the DMA data transfers for each t1 ∈ T ∗ must end before the
next activation instant t2 ∈ T ∗, with t2 > t1.

Constraint 10 (Property 3). ∀t1, t2 ∈ T ∗, such that t1 < t2,
(maxτi∈Γ(RGITt1,i) + 1)λO + ωc

∑
cz(t1)∈C(t1) σl ≤ t2 − t1,

where `l is the label involved in the z-th communication at t1.

This constraint follows similarly to the previous one. Here, RGITt,i
is an auxiliary variable that denotes the index of the last LET read
of task τi among the communications occurring at time t.

In this formulation, checking the communication delays at s0

as presented in Constraint 9 is a sufficient condition to guarantee
schedulability at all other instants t ∈ T ∗, t > s0. This is formally
stated in the following theorem.

Theorem 1. A mapping that satisfies Constraints 1-10 guarantees
that, for each t ∈ T ∗, the data communication delay experienced by
τi cannot be larger than the one experienced by τi at s0.

Proof. By contradiction, let assume that the theorem does not hold
for a given t ∈ T ∗. Then, at t, either (i) more LET communications
than at s0 are required or (ii) more DMA transfers are issued due to
communications involving labels that are more fragmented (because
communications involving intermediate labels are skipped). Condi-
tion (i) cannot occur since C(s0) ⊇ C(t), ∀t ∈ T ∗. On the other
hand, condition (ii) is also impossible since Constraint 6 guarantees
that for all communications ∀t ∈ T ∗, the labels mapped in the same
DMA transfer are contiguous. Hence the theorem follows.

Objective Function: While the problem is in essence a feasibility
problem, two objective functions are proposed to encode the intuitive
goal of minimizing the communications overheads: minimizing the
number of DMA data transfers, or the maximum ratio between the
communication delay and the period of a task, i.e.:

minimizemax
τi∈Γ

(
RGIi

)
(4) minimizemax

τi∈Γ

(
λi/Ti

)
. (5)

VII. EXPERIMENTAL RESULTS

The proposed approach has been evaluated with a realistic case
study representative of an autonomous driving application presented
by Bosch for the WATERS 2019 Industrial Challenge [15]. The
parameters of tasks and labels and the data dependencies are provided
with the case study, while the task mapping is based on the challenge
solution of [16]. We performed experiments considering a DMA
programming time oDP = 3.36µs, using the results of measurements
from [8], and the delay due to each DMA completion interrupt equal
to oISR = 10µs. Since the data acquisition deadlines of the tasks
were not provided by the Challenge, they have been set according
to the following sensitivity analysis procedure. First, we computed
the worst-case response time (WCRT) Ri of each task τi ∈ Γ (as
discussed in Section V), and the slack Si = Di −Ri. Then, we set
γi = α·Si, and we checked schedulability by computing the WCRTs
using γi as a bound on the jitter, with α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.

(a), NO-OBJ

0

50

100
λ
i

ra
tio

s
(%

)

α
=

0
.2

(b), OBJ-DMAT

0

50

100 (c), OBJ-DEL

0

50

100

(d), NO-OBJ

LID DASM CAN EKF PLAN SFM LOC LDET DET

0

50

100

λ
i

ra
tio

s
(%

)

α
=

0
.4

(e), OBJ-DMAT

LID DASM CAN EKF PLAN SFM LOC LDET DET

0

50

100
(f), OBJ-DEL

LID DASM CAN EKF PLAN SFM LOC LDET DET

0

50

100

This Paper/Giotto CPU This Paper/Giotto DMA-A This Paper/Giotto DMA-B

Figure 2. Ratios between data acquisition delays λi obtained under configurations for the tasks of the WATERS 2019 Challenge [15].

Table I
OBSERVED RUNNING TIMES AND NUMBER OF DMA TRANSFERS

Obj. Function MILP running time # DMA Transfers
α = 0.2 α = 0.4 α = 0.2 α = 0.4

NO-OBJ 8 sec 8 sec 16 16
OBJ-DMAT 1 hour 1 hour 12 12
OBJ-DEL 8 sec 12 sec 16 16

We compared four different approaches: (i) the one proposed in
this paper, (ii) the state-of-the-art Giotto approach [1], with LET
copies performed by the CPU (labeled Giotto-CPU), (iii) the
Giotto approach enhanced with the usage of a DMA but without
the communication re-ordering proposed in this paper and a separate
DMA transfer (i.e., no knowledge of the memory layouts) for each
LET copy (Giotto-DMA-A), and (iv) the Giotto approach with
DMA and using the memory layout found by the optimization
problem in Section VI for the case at point (i) (Giotto-DMA-B).
We also considered three different cases for the objective function: (a)
no objective function (NO-OBJ), (b) the minimization of the number
of DMA transfers (Eq. (4), OBJ-DMAT), and (c) the minimization
of the λi/Ti ratio (Eq. (5), OBJ-DEL). The experiments have been
performed on a machine with 128GB of memory, 2x Intel Xeon(R)
CPU E5-2640 v4 @ 2.40GHz, with 40 cores. The MILP has been
solved with IBM CPLEX, setting a timeout of 1 hour.

Six representative configurations are reported in Fig. 2. On the
X-axis there are the 9 tasks of the case study (LID, DASM, CAN,
EKF, PLAN, SFM, LOC, LDET and DET) and on the Y-axis the ratio
between the data acquisition latency λi obtained with our method and
with the other three alternative approaches.

The three cases on top correspond to α = 0.2, the bottom row
to α = 0.4. Fig. 2 (a) and (d) show the result obtained without
an objective function. A solution is obtained very quickly (8s: see
Table I) and already shows significant improvements with respect
to the latency of DASM, CAN and SFM tasks. Fig. 2 (b) and (e)
show the results obtained when minimizing the number of DMA
transfers. The solution for α = 0.2 has values for λi even lower than
in the previous case, but this is not true for α = 0.4. In this case, the
solver is free to choose any solution with a minimal number of DMA
transfers as long the constraints on γi are respected, which are less
restrictive than those set for α = 0.2. The number of DMA transfers
found is 12 in both cases. This may not be the minimal number, as
the solver stopped with a feasible solution after the timeout (Table I).

Finally, Fig. 2 (c) and (f) show the results when the ratio λi/Ti
is minimized. The charts for α = 0.2 and α = 0.4 do not differ
significantly and show very short delays for tasks with a small period
(e.g., DASM, CAN, and SFM) and significant improvements also for
the other tasks. Similar results have been obtained for α = 0.3 and
α = 0.5, while for α = 0.1 the solver was not able to find a feasible

solution. Overall, the proposed approach offers much shorter latencies
λi by optimizing the individual communication delay of each task
τi, reaching improvements up to 98% on prior approaches.

VIII. CONCLUSIONS

This paper presented a new protocol to perform LET communica-
tions while leveraging the parallelism offered by a DMA engine. The
problem of finding an optimal memory allocation and scheduling of
the LET communications due to different tasks has been addressed,
formulating it as a MILP. Experimental results reported improvements
up to 98% with respect to the Giotto approach with CPU-driven data
transfers on a realistic use-case.

REFERENCES

[1] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in International Work-
shop on Embedded Software. Springer, 2001, pp. 166–184.

[2] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst, “Commu-
nication Centric Design in Complex Automotive Embedded Systems,” in
29th Euromicro Conference on Real-Time Systems (ECRTS 2017), 2017.

[3] A. Biondi and M. Di Natale, “Achieving Predictable Multicore Execution
of Automotive Applications Using the LET Paradigm,” in Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2018.

[4] Infineon, “AURIX™ 32-bit microcontrollers for automotive and indus-
trial applications Highly integrated and performance optimized.”

[5] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the functional
deployment on multicore platforms with logical execution time,” in 2019
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2019, pp. 207–219.

[6] S. Wasly and R. Pellizzoni, “Hiding memory latency using fixed priority
scheduling,” in 19th Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2014.

[7] D. Casini, P. Pazzaglia, A. Biondi, M. Di Natale, and G. Buttazzo, “Pre-
dictable memory-cpu co-scheduling with support for latency-sensitive
tasks,” in 57th Design Automation Conference (DAC), 2020.

[8] R. Tabish, R. Mancuso, S. Wasly, R. Pellizzoni, and M. Caccamo, “A
real-time scratchpad-centric os with predictable inter/intra-core commu-
nication for multi-core embedded systems,” Real-Time Systems, 2019.

[9] B. Rouxel, S. Skalistis, S. Derrien, and I. Puaut, “Hiding communication
delays in contention-free execution for spm-based multi-core architec-
tures,” in 31st Euromicro Conference on Real-Time Systems, 2019.

[10] A. Marchand, P. Balbastre, I. Ripoll, M. Masmano, and A. Crespo,
“Memory resource management for real-time systems,” in 19th Euromi-
cro Conference on Real-Time Systems, July 2007, pp. 201–210.

[11] D. Casini, A. Biondi, G. Nelissen, and G. Buttazzo, “Memory feasibility
analysis of parallel tasks running on scratchpad-based architectures,” in
39th Real-Time Systems Symposium (RTSS), 2018.

[12] I. Puaut and C. Pais, “Scratchpad memories vs locked caches in
hard real-time systems: a quantitative comparison,” in 2007 Design,
Automation Test in Europe Conference Exhibition, 2007, pp. 1–6.

[13] J. Whitham and N. Audsley, “Implementing time-predictable load and
store operations,” in Proceedings of the Seventh ACM International
Conference on Embedded Software, 2009, pp. 265–274.

[14] J.-J. Chen et al., “Many suspensions, many problems: a review of self-
suspending tasks in real-time systems,” Real-Time Systems, Sep 2018.

[15] A. Hamann, D. Dasari, F. Wurst, I. Sañudo, N. Capodieci, P. Burgio,
and M. Bertogna. WATERS Industrial Challenge 2019.

[16] D. Casini, P. Pazzaglia, A. Biondi, G. Buttazzo, and M. Di Natale, “Ad-
dressing analysis and partitioning issues for the Waters 2019 challenge,”
in 10th International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS 2019), 2019.

