
A ROS 2 Response-Time Analysis Exploiting
Starvation Freedom and Execution-Time Variance

Tobias Blaß1 Daniel Casini2 Sergey Bozhko3 Björn B. Brandenburg3

1Robert Bosch GmbH and Saarland University, Saarland Informatics Campus (SIC), Germany
2TeCIP Institute and Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna Pisa, Italy

3Max Planck Institute for Software Systems (MPI-SWS), Saarland Informatics Campus (SIC), Germany

Abstract—Robots are commonly subject to real-time constraints.
To ensure that such constraints are met, recent work has analyzed
the response times of processing chains under ROS 2, a popular
robotics framework. However, prior work supports only scalar
worst-case execution time bounds and does not exploit that the
ROS 2 scheduling mechanism is starvation-free.

This paper proposes a novel response-time analysis for ROS 2
processing chains that accounts for both the high execution-
time variance typically encountered in robotics workloads and
the starvation freedom of the default ROS 2 callback scheduler.
Experimental results from both synthetic callback graphs and a
real ROS 2 workload empirically show the proposed analysis to
be much more accurate (often by a factor of 2× or more).

I. INTRODUCTION

Among the frameworks commonly used to program robots,
ROS [1] is undoubtedly one of the most widespread: according
to the ROS community metrics released in July 2020 [2], it is
used by thousands of users, with a 33% increase in users
over 2019. Reasons for its popularity include the flexible
communication infrastructure, a low barrier to entry, and
foremost a vibrant ecosystem, which allows developers to
quickly integrate extensively tested components instead of re-
implementing common functionality from scratch.

Timing correctness is a central challenge in such systems.
In recent years, the real-time community has started to
address this issue by developing response-time analyses for
ROS 2 systems [3]–[5]. Compared to traditional real-time
systems, ROS1 systems impose two additional challenges.
First, ROS systems do not consist of independent tasks, but
of a network of interacting callbacks. The analysis has to
cope with dependencies among callbacks and must bound
the response times of entire chains of callbacks. Second,
callbacks are multiplexed onto shared executor threads, which
execute callbacks using a custom scheduling policy that differs
significantly from common real-time schedulers. The analysis
thus not only has to consider the scheduling of executor threads
by the OS, but also callback sequencing within executors.

In this paper, we improve upon prior analyses of ROS along
three dimensions: a refined model of processor demand, a
less pessimistic callback activation model, and an improved
response-time analysis that exploits starvation freedom in the
ROS executor’s callback scheduling algorithm.

The improved processor-demand model addresses the prob-
lem that prior analyses support only scalar worst-case execu-

1For brevity we omit the version and refer to ROS 2 simply as ROS.

tion times (WCETs), meaning that the processor demand of
any activation of a callback is characterized with a single,
often pessimistic bound. In contrast, ROS callbacks often
exhibit highly variable execution times [6], which are poorly
represented by a single scalar. Such execution times are
better described as execution-time curves. First introduced by
Quinton et al. as ET+ functions [7], execution-time curves
are a general way to describe the cumulative processor demand
of multiple consecutive instances. In this paper, we model
the processor demand of callbacks with execution-time curves.
Taking advantage of the richer description, however, poses
significant challenges in the analysis (Sec. IV-D).

In an orthogonal direction, we improve the callback activa-
tion model to better account for activations among callbacks
assigned to the same executor. As a result, we obtain more
accurate bounds on intra-executor activations (Sec. V), without
imposing additional constraints on the callback graph.

Finally, we develop a new analysis to exploit a key property
of the scheduling mechanism in ROS executors, namely that it
provides starvation freedom: executors execute callbacks in a
round-robin fashion, preventing any individual callback from
hogging the executor. It has been previously recognized that
this makes it difficult, or even impossible, to properly prioritize
callbacks [3, 5]. However, this design can also reduce worst-
case response times by limiting interference from competing
callbacks, in particular if competing callbacks are activated in
bursts, but prior analyses fail to capture this positive aspect.
In this paper, we propose a new response-time analysis that
exploits the benefits of the round-robin property (Sec. IV).

We evaluated the proposed analysis on both synthetic
callback graphs and a widely used ROS package. The empirical
results show that each of the three improvements leads to tighter
response-time bounds, and that jointly they yield much more
accurate bounds overall. It also shows that the new round-robin
analysis and the traditional busy-window approach are most
effective under different circumstances, so that a combination
of both yields the best response-time bounds (Sec. VI).

II. BACKGROUND

The ROS framework is composed of a stack of layers, as
illustrated in Fig. 1. ROS users and developers interact with the
language-specific layers at the top, which provide a language-
specific API to define a ROS application. In this work, we

1



R
O

S
 A

p
p

li
c

a
ti
o

n
R

O
S
 F

ra
m

e
w

o
rk

O
S Linux/Windows/OS X

Language-specific Layers rclcpprclpy

Client Library rcl

Middleware Library rmw

DDS Intra-process APICommunication

sensing

actuation

Executor A Executor B

callback

topic

node

Legend

Fig. 1: Layered structure of ROS.

focus on the C++ interface, which we consider the presently
most suitable choice for time-sensitive applications.

From a logical point of view, ROS applications are composed
of callbacks and topics. Communication follows the publish-
subscribe paradigm: callbacks publish messages to topics,
where each message triggers the callbacks subscribing to
the topic. Alternatively, callbacks may also be triggered by
timers. The resulting graph of interacting callbacks and topics
(illustrated in the upper part of Fig. 1) implements the complex
and dynamic behavior of the robot.

ROS additionally provides an asynchronous remote proce-
dure call (RPC) facility via services and the associated service
handler and client callbacks. From the perspective of the ROS
scheduler, these callbacks behave identically to regular sub-
scription callbacks. We thus do not distinguish between topics
and services in this paper; our analysis applies to both equally.

Below the language-specific layer, the rcl library implements
the core functionalities of ROS. This guarantees consistent
behavior across different programming languages and provides
a common system model. The rcl layer sits on top of the
rmw layer, which provides a common API to the underlying
communication middleware (usually DDS [8]).

The ROS scheduling policy and execution model is im-
plemented by executors, which choose the order in which
pending callbacks are executed. While ROS supports in
principle arbitrary user-defined executors, it provides two built-
in implementations, a single- and a multi-threaded one, which
are commonly used. This paper focuses exclusively on the
single-threaded executor provided by ROS, the default solution.

The executor selects the next callback to run by considering
each class of callbacks in order: first timers, then subscriptions,
service handlers, and finally clients. Within each class, callbacks
are considered in registration order, i.e., the order in which
they were registered with the runtime system at process startup.
Overall, the combination of callback type and registration
time uniquely determines the priority of each callback. Once

selected, the chosen callback must run to completion before
the executor can select the next callback to run.

One peculiarity of the ROS scheduler is that the list of ready
instances is not updated before each scheduling decision. For
most classes of callbacks, each callback’s readiness status is
polled only irregularly from the underlying layers and cached in
the rclcpp layer. We refer to such callbacks as polled callbacks.
In contrast, the readiness status of a class of privileged callbacks
is updated before each scheduling decision.

Whether a callback is polled or privileged is determined by
the ROS implementation. In versions up to ROS 2 “Dashing,”
timers are privileged but all other classes are polled [3]. In
later versions, timers are polled callbacks as well [9].

The executor runs callbacks in the order described above.
Polled callbacks are removed from the cache on completion.
The executor polls the list of ready callbacks to refresh the
cache only when all callbacks have been removed, i.e., when
the cache has become empty, and then starts anew with the
processing of cached callbacks. We refer to points in time
when the executor’s pending callback cache is refreshed as
polling points, and to the interval between two successive
polling points as a processing window. An important property
of the cache is that it stores at most one ready instance of
each callback at a time. The executor thus runs at most one
instance of each polled callback per processing window.

It is worth stressing how the ROS callback scheduler
differs from common schedulers in the literature. First, it
prioritizes callbacks by kind: timers are inherently prioritized
over subscriptions, which are prioritized over service handlers,
which in turn are prioritized over clients. Second, it does not
consider all pending callbacks as eligible for execution. Instead,
polled callbacks only become eligible at the first polling point
after their activation. Third, the executor executes at most
one instance of each polled callback per processing window,
irrespective of the number of queued activations.

III. SYSTEM MODEL

Following prior work [3], we model the system as a set
of callbacks C, each of which activates a potentially infinite
sequence of instances. Each callback ci ∈ C is statically
assigned to one of k single-threaded executors E1, . . . ,Ek; for
notational convenience, we let ei denote callback ci’s assigned
executor. We assume a steady-state system (i.e., callbacks
neither leave nor join the system at runtime) and a discrete-
time model wherein all time parameters are integer multiples
of a basic time unit ε , 1 (e.g., a processor cycle).

Some of the inputs of a ROS system usually come from
outside the callback system, for example, devices. This is
commonly implemented through external driver threads that
convert external stimuli into ROS publications. For consistency,
we model such threads as executors with a single pseudo-
callback. This callback, which we refer to as an event source,
represents the computational demand and the communication
behavior of the driver thread.

We divide the set of all callbacks by type and let Ctmr, Cevt,
Csub, Csrv, and Cclt denote the set of all timers, event sources,

2



subscribers, services, and clients, respectively. The last three
categories are collectively referred to as the set of message-
driven callbacks Cmsg = Csub ∪ Csrv ∪ Cclt. We further let Ck
denote the subset of all callbacks assigned to executor Ek, so
that Ctmr

k denotes the subset of all timers assigned to executor
Ek, etc. Finally, lpk(ci) and hpk(ci) denote all callbacks in
Ck with lower or higher priority than ci, respectively.

We distinguish between the set of polled callbacks Cpol and
the set of privileged callbacks Cprv, with Cpol ∪ Cprv = C. In
ROS versions up to “Dashing,” only message-driven callbacks
are polled: Cpol , Cmsg. In later versions, timers are polled,
too: Cpol , Cmsg ∪ Ctmr. Event sources are always privileged.

Each callback ci is described by an activation curve ηi(∆),
which upper-bounds the number of activations within any time
window of length ∆ [10]–[12] (ηi(∆) = 0 if ∆ ≤ 0). For timer
callbacks and event sources, the activation curve is given as
part of the problem specification. For message-driven callbacks,
the activation curve is derived by the analysis (Sec. V).

Instance lifecycle. Each callback activates an instance when-
ever a type-dependent event occurs: an external stimulus for
event sources, a new period for timers, or an incoming message
for message-driven callbacks. We refer to the k-th instance
of a callback ci as cki . Each callback instance passes through
several phases, which are illustrated in Fig. 2.

Conceptually, an instance of a message-driven callback cki
is triggered when a message is published on the topic to
which ci subscribes. However, the triggering message may
incur a propagation delay while it traverses the ROS stack and
potentially the network. Consequently, the instance cki activates
only some time later when the triggering message arrives at
ci’s assigned executor ei. We let δi,j denote an upper bound
on the propagation delay between any two callbacks ci and cj ,
and further assume that there is negligible propagation delay
within the same executor, i.e., ei = ej ⇒ δi,j = 0.

Once activated, an instance cki is said to be pending until
it completes. If ci is a polled callback, then cki resides in a
middleware buffer after activation until it is sampled by its
executor at a future polling point. Once sampled, cki becomes
eligible for execution in the subsequent processing window.
After all higher-priority sampled instances have executed, the
executor then selects cki and runs it until cki completes. Due
to the polling-point semantics, there is at most one sampled
instance of a polled callback at a time.

The lifecycle of a polled, message-driven callback instance is
illustrated in the top part of Fig. 2, where instance c12 is triggered
by a message published to c2’s topic. Once the message arrives
at E1, it activates c12, which is sampled by E1 after some delay
at the next polling point.

A privileged callback’s lifecycle is somewhat simpler since
it does not involve a separate sampling step. There is hence
no difference between the time of activation and the time of
sampling. In contrast to polled callbacks, there can be multiple
simultaneously sampled instances of a privileged callback.

The bottom part of Fig. 2 illustrates the lifecycle of a
privileged timer callback c4. Executor E2 immediately samples

𝑡
𝑐1
1 𝒄𝟐

𝟏

≤ 𝛿1,2

trigger

𝐸1
activate start complete

𝑐1
2

sample

PPPP

𝑡
𝑐3
1 𝒄𝟒

𝟏𝐸2

start complete

PPPP

activate/sample

Fig. 2: Lifecycle of a message-driven callback c2 and a
privileged timer c4

c14 upon activation, and, once the current instance c13 completes,
the executor selects and starts c14 without further delay.

Execution-time model. In most of the real-time systems
literature (including Casini et al. [3]), execution-time re-
quirements are modeled as scalar worst-case execution times
(WCETs). While this is both safe and convenient from an
analysis perspective, it can be overly pessimistic for many
ROS applications. Since callbacks typically execute different
code paths depending on the contents of the messages, they
can exhibit varying execution-time patterns over time [6].

We therefore model the execution-time needs of each
callback ci as a cumulative execution-time curve ETi(n) [7],
which bounds the maximum cumulative execution time of any
n consecutive instances of ci. This model is strictly more
expressive: it can represent the scalar WCET model (in which
case ETi(n) is linear), but can also incorporate additional
information about series of activations.

Processing chains. The trigger relationships among callbacks
form a directed acyclic graph (DAG) D = {C, E}. An edge
(ci, cj) ∈ E encodes that an instance of ci may trigger one
instance of cj at some point during its execution. We define
the set of predecessors and successors associated with each
callback ci as pred(ci) = {cj ∈ C : ∃ (cj , ci) ∈ E} and
succ(ci) = {cj ∈ C : ∃ (ci, cj) ∈ E}, respectively. A callback
without predecessors is said to be a source callback.

In ROS, a conceptually single piece of functionality is often
realized jointly by multiple consecutive callbacks. We refer to
such a path through the callback graph as a callback chain.
Given such a chain γi = (cs, . . . , ce), a chain instance γki =
(cl1s , . . . , c

lk
e ) is a sequence of instances of the comprising

callbacks where each instance triggers the next instance in the
sequence. The chain instance activates when its first element
activates and completes when its last element completes.

Executors. Callbacks are subject to hierarchical scheduling at
two levels. The first level of scheduling is the operating system
scheduler, which schedules all executor threads as well as any
unrelated threads. To support a wide range of systems, we do
not assume any particular process scheduling algorithm. Instead,
we assume only the existence of a supply-bound function
sbfk (∆) that lower-bounds the amount of service provided
to an executor Ek within any time window of length ∆. Such

3



supply-bound functions are known for many commonly-used
OS schedulers [13]–[16].

The second level of scheduling is performed by each executor
when it selects the next instance to run. As described in Sec. II,
this scheduler has the following properties:
SQ Sequentiality: Different instances of the same callback are

executed in activation order.
NP Non-Preemptiveness: The executor selects a new instance

only when the previous instance has completed.
WC Work-Conservation: The executor never idles if an in-

stance is pending.
PP Polling Points: A polling point occurs when the executor

needs to select the next instance to execute but no sampled
instance is available.

SM Sampling: At a polling point, the executor samples up to
one instance of each polled callback in activation order.
Instances of privileged callbacks are sampled immediately
upon activation.

PR Selective prioritization: The executor runs sampled in-
stances (and only sampled instances) in priority order.

While the algorithm shares the first three properties with any
standard fixed-priority non-preemptive scheduler, the last three
properties represent the unique behavior of the ROS executor.

IV. ROUND-ROBIN ANALYSIS

We now present a response-time analysis for processing
chains based on the round-robin behavior of the ROS callback
scheduler. We begin with some definitions. The worst-case
response time of a callback ci or a chain γi is the largest
possible difference between activation and completion of any
instance of ci (respectively, γi). We let R(ci) (respectively,
R(γi)) denote the response-time bound of ci (respectively, γi).

A callback instance cxi is pending during an interval [t1, t2)
if it is pending at any instant t ∈ [t1, t2). cxi suffers interference
from another instance cyj at time t if cyj occupies the shared
executor at t and cxi is incomplete at t. Interference is direct
if cxi is pending at time t and indirect if cxi is not yet pending.
As a special case, we call interference by prior instances of ci
self-interference. A chain instance suffers interference if any
of its callback instances suffers interference.

A. Motivation

Property SM of the ROS callback scheduler leads to round-
robin-like behavior: no more than one instance per polled
callback runs in each processing window, independently of its
priority or the number of pending instances.

This scheduling approach ensures a notion of fairness among
polled callbacks. Consider two polled callbacks, c1 and c2.
Assume c1 is triggered periodically and has two pending
instances, whereas c2 is triggered in infrequent bursts and has
ten pending instances. Due to Property SM, only two instances
of c2 interfere with c1’s two pending instances. A traditional
busy-window analysis (e.g., [3]) would pessimistically account
for ten interfering instances instead. The analysis proposed in
this section improves upon prior work by bounding the number
of processing windows needed to complete a chain instance.

B. Interference Bounds

In the following, we exploit Property SM to establish bounds
on total interference. As a preliminary, Lemma 1 bounds the
number of pending callback instances in arbitrary time intervals.

Lemma 1. Let ci be any callback. In any interval of length
∆, at most ηi(∆ +R(ci)− ε) instances of ci are pending.

Proof. Consider an arbitrary interval [t, t+ ∆). If ∆ = 0, then
the bound holds trivially, so assume ∆ > 0. Clearly, callback
instances activated at or after time t + ∆ are not pending
before t+ ∆. By definition of the response-time bound R(ci),
instances of ci activated at or before t−R(ci) are complete
by time t. Thus, only instances activated in (t−R(ci), t+ ∆)
are pending during [t, t + ∆). The lemma follows since the
length of (t−R(ci), t+ ∆) is ∆ +R(ci)− ε. �

Next, we introduce a bound that exploits Property SM to
bound the number of callback instances that directly interfere
with a callback ci. The bound depends only on ci’s activation
curve and not on the activation curve of the interfering callbacks.
In the following lemmas, let N denote a given upper bound
on the number of polling points in an arbitrary interval [t1, t2).
We later show in Lemma 7 how to obtain such a bound N . For
brevity, we let JpK1 denote the indicator function that evaluates
to 1 if the predicate p is true and to 0 otherwise.

Lemma 2. Let ci ∈ Cpolk and cj ∈ Cpolk \ {ci}. Let N be a
bound on the number of polling points in Ek during an interval
[t1, t2). If an instance of ci completes at time t2, then at most
N + Jcj ∈ hpk(ci)K1 instances of cj run during [t1, t2).

Proof. Consider separately the last polling point before time
t2 (called last polling point hereafter), and the up to N − 1
polling points in [t1, t2) that precede the last polling point
(called internal polling points hereafter). Each of these polling
points samples at most one instance of cj (Property SM). In
the case of internal polling points, all such instances run before
the next polling point and thus before t2. In the case of the
last polling point, the instance of ci that completes at t2 is
among the sampled instances. During the processing window,
the executor Ek runs only callbacks of higher priority than
ci before ci (Property SM). Thus, instances of callbacks in
lpk(ci) run after t2, and instances in hpk(ci) ∪ ci run before
t2. There may be further instances running in [t1, t2) that have
been sampled before t1. These instances are all sampled at the
same polling point, namely the last polling point preceding
t1 (Property PP). There is thus at most one such instance per
callback (Property SM). Overall, cj executes in [t1, t2) up to
N − 1 instances sampled at internal polling points, at most
1 instance sampled before t1, and, if cj ∈ hpk(ci), at most
1 instance sampled at the last polling point, for a total of at
most N + Jcj ∈ hpk(ci)K1 instances. �

Lemmas 1 and 2 bound the number of callbacks that run
during an interval in different ways. The minimum of both
bounds is a safe bound, too, as the following corollary notes.

4



Corollary 1. Let ci ∈ Cpolk and cj ∈ Cpolk \ {ci}. Let N be an
upper bound on the number of polling points in Ek during an
interval [t1, t2). If an instance of ci completes at time t2, then
for any 0 ≤ ∆ ≤ t2 − t1 at most

min
(
ηj(∆ +R(cj)− ε), N + Jcj ∈ hpk(ci)K1

)
instances of cj run during [t1, t1 + ∆).

Thanks to Corollary 1, we can bound the total amount of
direct interference a callback ci suffers from other callbacks.

Definition 1. For any polled callback ci assigned to Ek, the
direct interference bound function Ii(∆, N) is given by

Ii(∆, N) ,
∑

cj∈Cprv
k

ETj (ηj(∆ +R(cj)− ε))

+
∑

cj∈Cpol
k \{ci}

ETj (vj)

with vj = min
(
ηj(∆ +R(cj)− ε), N + Jcj ∈ hpk(ci)K1

)
.

Lemma 3 shows Ii(∆, N) to be sound.

Lemma 3. Let ci ∈ Cpolk . Let N be an upper bound on the
number of polling points in Ek during an interval [t1, t2). If
an instance of ci completes at time t2, then for any 0 ≤ ∆ ≤
t2 − t1, instances of callbacks in Ck \ ci consume at most
Ii(∆, N) units of processor service during [t1, t1 + ∆).

Proof. First note that, w.r.t. each callback, instances running
during [t1, t1 + ∆) form a consecutive sequence of instances.
Thus, if n instances of an interfering callback cj run during
[t1, t1 + ∆), then their total demand is bounded by ETj (n).
In case of privileged callbacks only pending instances can run.
Therefore, Lemma 1 yields a bound on the number of callbacks
that may be executed in [t1, t1+∆). In case of polled callbacks,
Corollary 1 shows that vj bounds the number of instances that
may run in [t1, t1 + ∆). Since each callback in Ck is either
privileged or polled, Ii(∆, N) bounds the total demand across
all callbacks in Ck \ {ci}. �

Next, we bound the direct self-interference caused by earlier
instances of the callback under analysis.

Definition 2. For any ci ∈ Cpol, the self-interfering instances
bound is given by si i(∆) , max(0, ηi(∆ +R(ci)− ε)− 1).

Lemma 4 shows Definition 2 to be sound.

Lemma 4. Let ci be an arbitrary callback and cxi one of ci’s
instances. During any interval [t1, t1 + ∆) for any ∆ ≥ 0, at
most si i(∆) instances directly self-interfere with cxi .

Proof. If ∆ = 0, then [t1, t1 + ∆) is empty and does not
contain any self-interfering instance, and hence si i(∆) ≥ 0
is an upper bound. If ∆ > 0, then ∆ + R(ci) − ε ≥ 0. By
Lemma 1, at most ηi(∆ +R(ci)− ε) = si i(∆) + 1 instances
of ci are pending during any interval of length ∆. To suffer
direct self-interference, cxi must be pending at some point in
[t1, t1 + ∆). By definition of the response-time bound R(ci),
instances released at or prior to t1−R(ci) complete by time t1;

cxi is hence activated after time t1 −R(ci). Thus, one of the
si i(∆) + 1 pending instances is cxi itself, which implies that
at most si i(∆) instances cause direct self-interference. �

C. Response-Time Bound

With Definitions 1 and 2 in place, we now bound the response
time of any given subchain γ = (cs, . . . , ce) assigned to execu-
tor Ek ending in a polled callback ce. Let γa = (cxs , . . . , c

y
e)

be an arbitrary instance of this subchain. Let A denote γa’s
activation time and F its completion time, so that its response
time is given by F −A.

As a first step towards a response-time bound, we note that
throughout [A,F ) some callback of γa is always pending.

Lemma 5. At any time in [A,F ), at least one of the callback
instances comprising γa = (cxs , . . . , c

y
e) is pending.

Proof. Since all callbacks in γa are assigned to Ek and the
intra-executor propagation delay is zero, each callback instance
cqi ∈ γa \ cye is still running when its successor cwj ∈ γa is
activated, with cj ∈ succ(ci). Thus, at least one of the callbacks
in γa is pending throughout [A,F ). �

Since at least one callback instance in γa is pending at every
polling point during [A,F ), each polling point samples at least
one instance of a callback in γ, which implies an upper bound
on the number of polling points.

Definition 3. For any callback ci, its polling-point bound pp(ci)
is defined as pp(ci) , ηi(R(ci)) if ci ∈ Cpol, and simply as
pp(ci) , 0 otherwise. For a subchain γ, the aggregate bound
pp(γ) is defined as pp(γ) ,

∑
ci∈γ pp(ci).

Lemmas 6 and 7 prove the correctness of these bounds.

Lemma 6. Let cxi be an arbitrary callback instance. Let ta
denote cxi ’s activation time and tf denote its completion time.
There are at most pp(ci) polling points in [ta, tf ).

Proof. If ci is not a polled callback, cxi is sampled immediately
upon activation. Since a polling point occurs only if there are
no sampled instances (Property PP), there can be no polling
point in [ta, tf ). If ci is a polled callback each polling point in
[ta, tf ) samples one instance of ci since at least one instance of
ci, namely cxi , is pending during the entire interval [ta, tf ). The
number of polling points in [ta, tf ) is therefore bounded by the
number of instances of ci that are sampled in [ta, tf ). The last
of these instances is cxi (Property PP), which is pending at ta.
Due to Property SQ, any instance of ci that is sampled at or
after ta, but before cxi is sampled, must be activated before cxi ,
which implies that any such instance is also pending at time
ta. The number of polling points in [ta, tf ) is thus bounded by
the number of instances of ci pending at time ta. By Lemma 1
with ∆ = ε, at most ηi(R(ci)) instances of ci are pending at
time ta (i.e., during [ta, ta + ε)). �

Lemma 7. There are at most pp(γ) polling points in [A,F ).

Proof. By Lemma 5, at every time in [A,F ), at least one
callback of γa is pending. Every polling point in [A,F ) lies

5



thus between activation and completion of at least one of the
callbacks of γa (Property SM). By Lemma 6, pp(ci) bounds
the number of polling points between the activation and the
completion of each callback cyi of γa. The sum of the individual
polling-point bounds of the callbacks comprising γ hence yields
an upper bound on the total number of polling points between
the activation and completion of γa. �

Since γa’s last callback instance cye completes at time F , this
bound fulfills the condition on N and the associated interval
[t1, t2) in Lemmas 2 and 3 and Corollary 1.

In the last preparatory step, we observe a simple structural
property of self-interference.

Lemma 8. Let cyi , . . . , c
y+n
i be n + 1 consecutive instances

of a callback ci. If the last instance cy+ni runs for ωy+ni time
units, then the first n instances demand at most min

(
ETi(n+

1)− ωy+ni , ETi(n)
)

time units of processor service.

Proof. As cyi , . . . , c
y+n
i is a sequence of n + 1 consecutive

callback instances, their overall execution time is bounded by
ETi(n+ 1). The last element cy+ni , by assumption, runs for
ωy+ni time units. The first n elements thus run for at most
ETi(n + 1) − ωy+ni time units. Similarly, cyi , . . . , c

y+n−1
i is

a sequence of n consecutive callback instances; their total
execution time hence is bounded by ETi(n). �

The next two lemmas finally bound the response time F −A
by bounding first the start time S of the last callback instance,
and then its completion time F . The start time is a useful
stepping stone because, from this point on, other callbacks can
no longer interfere with γa (Property NP).

Using the established interference bounds, Lemma 9 finds
the latest point in time where cye , the last callback instance of
γa, must consume its first unit of supply, which bounds S.

Lemma 9. Let γa be an arbitrary instance of subchain γ, let
A denote γa’s activation time, let cye denote the last callback
instance in γa, suppose that cye requires ωye time units of
processor service, and let N , pp(γ). If S∗ is the least
positive solution (if any) of the inequality

sbfk (S∗) ≥ ε+ Ie(S
∗, N) + min

(
ETe(sie(S

∗) + 1)− ωye ,
ETe(sie(S

∗))
)
,

then cye starts running in [A,A+ S∗).

Proof. By Lemmas 3 and 7, ε+ Ie(S
∗, pp(γ)) strictly exceeds

the total direct interference due to all callbacks in Ck \{ce}. By
Lemma 4, there are at most sie(S∗) directly self-interfering
instances of ce. Since the self-interfering instances are consec-
utive, the total interference due to these instances is bounded
by Lemma 8 (with n = sie(S

∗)). We now show that cye
completes in [A,A + S∗). Since A is the activation time of
γa, by Lemma 5, there is always a pending callback instance
of γa until cye completes, which implies that the executor does
not idle (Property WC). Since S∗ satisfies the stated inequality,
the amount of service supplied by the executor exceeds the
total demand by callback instances directly interfering with cye

(either due to other callbacks or self-interference) by at least
ε units of service. It follows that the only instance that can
run while cye is pending without interfering with it is cye itself.
Therefore, cye starts running in [A,A+ S∗). �

From S∗, we obtain a bound on the response time of γa.

Theorem 1. Let γa be an arbitrary instance of subchain γ, let
A denote γa’s activation time, let cye denote the last callback
instance in γa, and suppose that cye requires ωye time units of
processor service. Let S∗ be defined as in Lemma 9. If R∗ is
the least positive solution (if any) of the inequality

sbfk (R∗) ≥ sbfk (S∗)− ε+ ωye ,

then R∗ is a response-time bound for γ (i.e., F −A ≤ R∗).

Proof. Due to Property NP, a callback instance cannot be
interfered with once it starts running. Recall from Lemma 9
that cye starts running in [A,S∗), and that it suffers at most
sbfk (S∗)− ε time units of direct interference before it starts
running. By assumption, cye runs for ωye time units. Therefore,
cye necessarily completes once the executor has provided
sbfk (S∗)− ε+ωye units of supply. Since R∗ satisfies the stated
inequality, the executor provides at least sbfk (S∗) − ε + ωye
units of supply in [A,A + R∗). Consequently, cye completes
in [A,A + R∗) and A + R∗ − A = R∗ is a response-time
bound for γa. Furthermore, since γa is an arbitrary instance
of γ upon which we have placed no restrictions, R∗ bounds
the response time of any instance of γ. �

D. Eliminating ωye
Both S∗ and R∗ in Theorem 1 depend on ωye , the exact

runtime of the last component of the chain under analysis,
which is unknown at analysis time. The bound thus cannot
be directly applied in a response-time analysis. While ωye can
be trivially bounded by 0 from below and by ETe(1) from
above, such an estimate would be needlessly pessimistic. In the
following, we refine Lemma 9 and Theorem 1 to be independent
of ωye (hereafter simply referred to as ω).

Since the argument does not depend on details of the
interference bounds (and will be reused in Sec. V), we consider
a more general version of the problem. Let f, g : N→ N be
any two monotonically increasing functions with f(t) > 0 and
g(t) ≥ 0 for all t. For a given ω ∈ N s.th. 0 ≤ ω ≤ ETe(1),
let s(ω) denote the least positive S∗ ∈ N that satisfies

sbfk (S∗)≥f(S∗)+min(ETe(g(S∗)),ETe(g(S∗)+1)−ω) (1)

and let r(ω) denote the least positive R∗ ∈ N that satisfies

sbfk (R∗) ≥ sbfk (s(ω))− ε+ ω. (2)

We refer to Ineqs. (1) and (2) as the defining inequality of s(ω)
and r(ω), respectively.

In the following, we derive a bound on maxω≥0 r(ω) for
arbitrary f and g that is independent of ω. This bound is then
applied to Lemma 9 and Theorem 1, which are a special case
of the above system of inequalities (with f(x) , ε+ Ie(x,N)

6



and g(x) , sie(x)). Our argument makes use of the following
trivial property of supply-bound functions.

Property 1. An executor cannot provide more than ε units of
supply in an interval of length ε: ∀x. sbfk (x) ≤ sbfk (x−ε)+ε.

To get started, we establish that s(ω) not only satisfies its
defining inequality (Ineq. (1)), but in fact yields an equality.
For brevity, let z(S∗) denote the right-hand side of Ineq. (1).

Lemma 10. If 0 ≤ ω ≤ ETe(1) and Ineq. (1) has a positive
solution, then sbfk (s(ω)) = z(s(ω)).

Proof. By contradiction: suppose sbfk (s(ω)) > z(s(ω)). By
Property 1, sbfk (s(ω) − ε) ≥ sbfk (s(ω)) − ε > z(s(ω)) − ε.
Since time is discrete, sbfk (s(ω)− ε) > z(s(ω))− ε implies
sbfk (s(ω) − ε) ≥ z(s(ω)). s(ω) − ε is thus a solution of
Ineq. (1), too. Since s(ω) is by definition the least positive
solution of Ineq. (1), it follows that s(ω)−ε = 0, which implies
z(s(ω)) = 0 since sbfk (s(ω)− ε) = sbfk (0) = 0. However, as
f(s(ω)) > 0, this implies min(ETe(g(s(ω))),ETe(g(s(ω)) +
1) − ω) < 0, which is impossible since ∀x.ETe(x) ≥ 0 and
ω ≤ ETe(1) ≤ ETe(g(s(ω)) + 1). �

The next three lemmas characterize s(ω) by identifying a
value ωm such that s is constant up to ωm and monotonically
decreasing afterwards. Based on ωm, we then identify the
maximum of r(ω). We begin by establishing monotonicity.

Lemma 11. s(ω) is monotonically decreasing.

Proof. Since ω ∈ N, it suffices to establish s(ω+ε) ≤ s(ω) for
any ω ≥ 0. To this end, we show that S∗ = s(ω) is a solution
to the defining inequality of s(ω+ ε), of which s(ω+ ε) is by
definition the least solution.

f(S∗) + min(ETe(g(S∗)),ETe(g(S∗) + 1)− (ω + ε))

≤f(S∗) + min(ETe(g(S∗)),ETe(g(S∗) + 1)− ω)

=f(s(ω)) + min(ETe(g(s(ω))),ETe(g(s(ω)) + 1)− ω)

≤sbfk (s(ω)) = sbfk (S∗) {Def. s(ω)} �

Lemma 11 implies that s is maximized at ω = 0. We
next observe that there exists a “tipping point” such that the
minimum term in Ineq. (1) resolves to its first argument below
the tipping point and to its second argument otherwise.

Lemma 12. There is an ωm such that

ω ≥ ωm ⇔ ETe(g(s(ω))) ≥ ETe(g(s(ω)) + 1)− ω.

Proof. For brevity, we refer to the right-hand side of the stated
equivalence as the ωm-criterion. There is always at least one
value that fulfills the ωm-criterion, namely ETe(1), since ETe

is sub-additive (ETe(n) ≥ ETe(n+1)− ETe(1) for any n).
Therefore, there also exists a least value of ω for which the

ωm-criterion holds. We now show that this least value satisfies
the stated equivalence: that is, the value of ωm is given by the
least ω for which the ωm-criterion holds.
⇐: follows immediately, since by definition ωm is the least

value that statisfies the ωm-criterion.

⇒: We show that ω not fulfilling the ωm-criterion im-
plies ω < ωm. Let ω∗ be a value of ω for which
ETe(g(s(ω∗))) < ETe(g(s(ω∗)) + 1) − ω∗. (If no such ω∗

exists, then ωm = 0 and the claim holds trivially.) Then s(ω∗)
fulfills s(ωm)’s defining inequality: by definition of ω∗ and
s(ω∗), we have sbfk (s(ω∗)) ≥ f(s(ω∗)) + ETe(g(s(ω∗)),
and since ∀x.ETe(g(s(ω∗)) ≥ min(ETe(g(s(ω∗)), x),
hence also sbfk (s(ω∗)) ≥ f(s(ω∗)) + min(ETe(g(s(ω∗)),
ETe(g(s(ω∗))+1)−ωm)), which is s(ωm)’s defining inequal-
ity. Since s(ω∗) is positive and s(ωm) is the least positive solu-
tion of ωm’s defining inequality, this implies s(ω∗) ≥ s(ωm),
which implies ω∗ ≤ ωm since s is monotonically decreasing
(Lemma 11). Further, ω∗ 6= ωm since ωm fulfills the ωm-
criterion while ω∗ does not. Therefore, ω∗ < ω. �

As a result, s(ω) is a constant function for any ω < ωm,
which implies that all values in [0, ωm) maximize s.

Lemma 13. If 0 ≤ ω < ωm, then s(ω) = s(0).

Proof. If ω<ωm, then ETe(g(s(ω))+1)−ω>ETe(g(s(ω)))
by Lemma 12. Therefore, s(ω) is the least positive solution
of the inequality sbfk (S∗) ≥ f(S∗) + ETe(g(S∗)), which
obviously does not depend on ω. Since by assumption ωm > 0
(otherwise ω < ωm does not exist since 0 ≤ ω), we have
s(ω) = s(0) for 0 ≤ ω < ωm. �

Based on Lemmas 10 to 13, we now identify the possible
maxima of the r function for 0 ≤ ω ≤ ETe(1).

Lemma 14. max0≤ω≤ETe(1) r(ω) ∈ {ωm, ωm − ε}

Proof. We distinguish two cases: ω < ωm and ω ≥ ωm.
Case 1: If ω < ωm, then s(ω) = s(0) (Lemma 13) and thus
sbfk (r(ω)) ≥ sbfk (s(0))− ε+ ω. Since sbfk is monotonically
increasing, r(ω) is hence also monotonically increasing and is
thus maximized if ω is maximized, i.e., at ω = ωm − ε.
Case 2: If ω ≥ ωm, then by Lemma 12 the minimum term in
Ineq. (1) is equal to ETe(g(s(ω)) + 1) − ω. By Lemma 10,
Ineq. (1) is in fact an equality, which allows us to replace
sbfk (s(ω)) with the right-hand side of Ineq. (1). Therefore,
r(ω) is the least positive value satisfying:

sbfk (r(ω)) ≥ sbfk (s(ω))− ε+ ω

= f(s(ω)) + ETe(g(s(ω)) + 1)− ω − ε+ ω

= f(s(ω)) + ETe(g(s(ω)) + 1)− ε.

r(ω) is thus monotonically increasing in s(ω) (as sbfk , f ,
g, and ETe are all monotonically increasing). Since s(ω) is
monotonically decreasing (Lemma 11), s(ω) is maximized if
ω is minimized, i.e., at ω = ωm. �

Based on the maxima of r(ω), the next lemma provides two
simplified inequalities that no longer depend on ω.

Lemma 15. If S∗ is the least positive solution of

sbfk (S∗) ≥ f(S∗) + ETe(g(S∗)), (3)

7



Ω , ETe(g(S∗) + 1) − ETe(g(S∗)), and R∗ is the least
positive solution of

sbfk (R∗) ≥ sbfk (S∗)− ε+ Ω, (4)

then R∗ ≥ max0≤ω≤ETe(1) r(ω).

Proof. We first show that S∗ upper-bounds s(ωm) and, if
ωm > 0, s(ωm − ε). If ωm = 0, then by Lemma 12
ETe(g(s(ωm))) ≥ ETe(g(s(ωm)) + 1). Since ETe is
monotonically increasing, this implies ETe(g(s(ωm))) =
ETe(g(s(ωm)) + 1). As a result, Ineq. (3) is equivalent to
the defining inequality of s (Ineq. (1)) for ω = ωm and S∗ is
therefore equal to s(ωm). If ωm > 0, Ineq. (3) is equivalent
to the defining inequality of s (Ineq. (1)) for ω = ωm − ε
(Lemma 12), and hence S∗ = s(ωm−ε). As s is monotonically
decreasing (Lemma 11), this implies S∗ ≥ s(ωm).

We now show that Ω ≥ ωm. If ωm = 0, then Ω is trivially
an upper bound, so assume ωm > 0 and thus S∗ = s(ωm− ε).
By the definition of ωm, it then holds that:

ETe(g(s(ωm − ε))) < ETe(g(s(ωm − ε)) + 1)− (ωm − ε)
⇔ ETe(g(S∗)) < ETe(g(S∗) + 1)− (ωm − ε)
⇔ (ωm − ε) < ETe(g(S∗) + 1)− ETe(g(S∗))

⇔ ωm < ETe(g(S∗) + 1)− ETe(g(S∗)) + ε

⇔ ωm < Ω + ε⇔ ωm ≤ Ω

Finally, we establish that R∗ upper-bounds both r(ωm) and,
if ωm > 0, r(ωm − ε) by showing that R∗ fulfills r’s defining
inequality (Ineq. (2)) for ω∗ ∈ {ωm, ωm − ε}.

sbfk (R∗) ≥ sbfk (S∗)− ε+ Ω

⇒sbfk (R∗) ≥ sbfk (S∗)− ε+ ω∗ {Ω ≥ ω∗ ≥ ω∗ − ε}
⇒sbfk (R∗) ≥ sbfk (s(ω∗))− ε+ ω∗ {S∗ ≥ s(ω∗)}

Thus, by Lemma 14, R∗ ≥ r(ω) for 0 ≤ ω ≤ ETe(1). �

Having solved the general case, we now apply Lemma 15
to the response-time analysis in Lemma 9 and Theorem 1.

Theorem 2. Let γa be an arbitrary subchain instance. Let A
be γa’s activation time, let F be γa’s completion time, and let
cye denote the last callback instance in γa. Let S∗ be the least
positive solution (if any) of the following inequality.

sbfk (S∗) ≥ ε+ Ie(S
∗, pp(γ)) + ETe(sie(S

∗)) (5)

Let Ω , ETe(sie(S
∗) + 1) − ETe(sie(S

∗)), and let R∗ be
the least positive solution (if any) of the following inequality.

sbfk (R∗) ≥ sbfk (S∗)− ε+ Ω (6)

Then R∗ is a response-time bound for γ: F −A ≤ R∗.

Proof. Follows from Lemma 15 for f(x) , ε+ Ie(x,N) and
g(x) , sie(x), Lemma 9, and Theorem 1. �

Since Theorem 2 does not depend on ωye , it is suitable for an
a priori response-time analysis. Specifically, an implementation
can find the least solution S∗ through fixed-point iteration and

then compute a response-time bound. If a solution S∗ cannot
be found, then Theorem 2 is not applicable.

Furthermore, since the computation of γa’s response-time
depends on other response-time bounds in a cyclical fashion
(e.g., Definitions 1 and 2), another outer fixed-point iteration is
necessary [11] until the response-time bounds for all callbacks
have reached a global fixed point (or until some predefined
threshold is exceeded). This process always terminates since
the response-time estimates never decrease during the search.

V. BUSY-WINDOW ANALYSIS

We now integrate the busy-window principle with the
preceding analysis. A key benefit of extending the analysis
horizon in this manner is that it allows for the derivation of
less pessimistic callback activation curves.

First, some preliminary definitions: We say that a callback
instance is carried in at time t if it is pending at both t and
t−1. An instant t is a quiet time of executor Ek if no instances
assigned to Ek are carried-in. An interval [t1, t2) is a busy
window w.r.t. a callback instance cxi if both t1 and t2 are quiet
times of cxi ’s executor, no quiet time of cxi ’s executor occurs
between t1 and t2, and cxi is activated in [t1, t2).

Since the propagation delay within executors is zero, all
components of a subchain instance γx share the same busy
window. We thus define the busy window of a chain instance
γx as the busy window of its components.

We again refer to the subchain instance under analysis as
γa, which is activated at time A and completes at time F .
For simplicity (and w.l.o.g.), we assume that the time axis is
normalized such that γa’s busy window starts at time zero.

A. Activation Curves

With basic definitions in place, we now introduce the
improved callback activation curves. To begin with, first recall
the general case from prior work [3], wherein the activation
curve ηj(∆) for any non-source callback cj is defined in terms
of the activation curves of cj’s predecessors:

ηj(∆) ,
∑

ci∈pred(cj)

ηi(∆ +R(ci)− ε+ δi,j). (7)

The bound follows since instances activated in [0,∆) must be
triggered in [−δi,j ,∆). An instance must be pending to trigger
a successor callback, and by Lemma 1 at most ηi(∆ + δi,j +
R(ci)− ε) instances of ci are pending in [−δi,j ,∆).

Under the busy-window assumption, the analysis can further
exploit that no instance served by γa’s executor is carried in at
time 0. If two callbacks ci and cj are assigned to γa’s executor,
then instances of ci activated before time 0 cannot activate
instances of cj at or after time 0. Definition 4 and Lemma 16
provide an activation curve variant that exploits this property
within γa’s executor and falls back to ηi(∆) otherwise.

8



Definition 4. For a message-driven callback cj assigned to
γa’s executor, the busy-window activation curve ηbj(∆) is given
by

ηbj(∆) ,
∑

ci∈pred(cj)

{
ηbi (∆) ei = ej ,
ηi(∆ + δi,j +R(ci)− ε) otherwise.

If cj is not message-driven, then ηbj(∆) , ηj(∆) instead.

Lemma 16. Let ∆ > 0, and cj ∈ Ck. If time 0 is a quiet
time of cj’s executor, then at most ηbj(∆) instances of cj are
activated during [0,∆).

Proof. By induction over the callback graph.
Induction base: For source callbacks, ηbj(∆) = ηj(∆), which
bounds the number of activations of cj in general.
Induction step: Consider any edge (ci, cj). If ci and cj do not
share an executor, then the number of activations along (ci, cj)
is bounded by ηj(∆ + δi,j + R(ci) − ε), which bounds the
number of activations along an arbitrary edge (Eq. (7)). If ci
and cj share an executor, then propagation delay is zero and no
instance of ci is carried in at time 0. Thus, all instances of ci
pending in [0,∆) are also activated in [0,∆). Only instances
pending in [0,∆) can trigger an instance of cj during [0,∆).
By the induction hypothesis, at most ηbi (∆) instances of ci are
activated in [0,∆). Since each instance triggers at most one
instance of cj , ηbi (∆) bounds the activations along the edge
(ci, cj). The above argument holds for each predecessor of cj ,
independently of any other predecessors. We can thus repeat
the argument for all predecessors of cj and bound the total
activations of cj by the sum of all per-predecessor bounds. �

B. Response-Time Bound

The improved activation curve replaces ηi in the interference
bound to reduce pessimism. In addition to ∆, the length of the
interval to consider, and N , a bound on the number of polling
points, the function takes cxi ’s activation time ta as a third
parameter. It then combines two ways to bound the number of
instances of a polled callback cj during [0,∆). The first way is
to bound all activations in [0,∆) as ηbj(∆), which exploits that
the considered interval starts at a quiet time but does not exploit
Property SM. The second way is to bound all activations in
[0, ta) as ηbj(ta), and to then bound the interference in [ta,∆)
(i.e., after cxi ’s activation) under consideration of Property SM.

Definition 5. For any polled callback ci assigned to Ek, the
busy-window interference bound is given by

Ibi (∆, N, ta) ,
∑

cj∈Cprv
k

ETj (η
b
j(∆))

+
∑

cj∈Cpol
k \{ci}

min

{
ETj (η

b
j(∆))

ETj (vj)

with vj = ηbj(ta) +N + Jcj ∈ hpk(ci)K1.

Lemma 17 proves the bound to be sound.

Lemma 17. Let ci ∈ Cpolk . Let ta and tf denote the activation
time and completion time of an instance of ci. Let N upper-
bound the number of polling points in Ek during the interval
[ta, tf ). If time 0 is a quiet time of Ek then for any 0 ≤ ∆ ≤ tf ,
instances of callbacks in Ck\{ci} consume at most Ibi (∆, N, ta)
units of processor service during [0,∆).

Proof. Since Ibi sums over all callbacks in Ck, it suffices to
show that both ETj (η

b
j(∆)) and, in the case of polled callbacks,

ETj (vj) bound how many instances of each interfering callback
cj run during [0,∆). By Lemma 16, ηbj(∆) bounds how many
instances of cj are activated in the interval [0,∆) (since by
assumption time 0 is a quiet time of Ek).

It remains to be shown that vj is a valid upper bound,
too. Lemma 16 again shows that ηbj(ta) bounds how many
instances of cj run during [0, ta). By Lemma 2 and Corollary 1,
N + Jcj ∈ hpk(ci)K1 upper-bounds the number of instances
running in [ta, tf ). Their sum therefore bounds the number of
instances running in [0, ta) ∪ [ta, tf ) = [0, tf ) ⊇ [0,∆). �

Analogously to Definition 2, we also define a busy-window-
aware self-interference bound sibi (ta) , ηbi (ta + ε) − 1,
using sibi (ta) in place of si i(∆) to leverage the busy-window
activation curve ηbi (∆). Unlike in Definition 2, no max(0, . . .)
term is required since ta + ε > 0 and therefore ηbi (ta + ε) ≥ 1.

Put together, the two new interference bounds yield a result
similar to Theorem 2.

Theorem 3. Let γa be an arbitrary instance of subchain γ.
Let A denote γa’s activation time, F its completion time, and
cye the last callback instance in γa. If time 0 is a quiet time of
γ’s executor, S∗ is the least positive solution (if any) of

sbfk (S∗) ≥ ε+ Ibe(S∗, pp(γ), A) + ETe(sibe(A)),

Ω , ETe(sibe(A) + 1) − ETe(sibe(A)), and F ∗ is the least
positive solution (if any) of the inequality

sbfk (F ∗) ≥ sbfk (S∗)− ε+ Ω,

then F ≤ F ∗ and F ∗ −A is a response-time bound for γ.

Proof. Recall there are at most pp(γ) polling points in [A,F )
(Lemma 7). By Lemma 17, ε+ Ibe(S∗, pp(γ), A) hence strictly
exceeds the total interference due to all callbacks in Ck during
[0, S∗). Since no instance of ce is carried in at time 0, sibe(A)
bounds the number of instances of ce except cye that are pending
(and hence self-interfering) in [0, A]. By Lemma 8, the total
self-interference is then given by min

(
ETi(si

b
e(A) + 1)−ωye ,

ETi(si
b
e(A))

)
, where ωye is cye ’s execution cost. Analogously

to the proofs of Lemma 9 and Theorems 1 and 2, the claim
then follows via Lemma 15 with f(x) , ε+Ibe(x, pp(γ), A)
and g(x) , sibe(A). �

Theorem 3 yields a response-time bound, namely F ∗ −A,
which however depends on an unknown offset A. We next
derive a sparse, finite set of offsets that suffice to be considered.

9



C. Search Space for the Activation Offset A

To start, Lemma 18 derives an upper bound on A.

Lemma 18. Let γ be an arbitrary chain, ce the last callback
of γ, and let A∗ denote the least positive solution (if any) of

sbfk (A∗) ≥ ε+ Ibe(A∗, pp(γ), A∗) + ETe(ηbe(A
∗)).

Then any instance of γ is activated strictly less than A∗ time
units after the beginning of its busy window.2

Proof. By contradiction: suppose an instance γa is activated
at time ta ≥ A∗. W.l.o.g. let time 0 denote the start of γa’s
busy window. By Lemma 17, Ibe(A∗, pp(γ), ta) bounds the total
interference that callbacks other than ce impose upon γa during
the time window [0, A∗). ETe(ηbe(A

∗)) bounds the demand
that ce imposes upon γa during [0, A∗). By the inequality in
the lemma statement, the supply available to callbacks served
by Ek during [0, A∗) then necessarily exceeds the possible
total demand during that time. Since γa is not pending before
ta ≥ A∗, this implies that the executor must idle at some
point during [0, A∗), i.e., there is a quiet time in (0, A∗). Since
γa’s busy window starts at time 0, this implies that γa’s busy
window ends before γa’s activation, which is a contradiction.
Therefore, any instance γa activates at most A∗ − ε time units
after the beginning of its busy window. �

To obtain a sparse search space, the next lemma identifies
that only “steps” in the ηbj bounds for the callbacks in Ek need
to be considered to find a response-time bound.

Lemma 19. Let γx be an arbitrary instance of γ, ce be the
last callback in γ, and A denote γx’s activation time. If A > 0,

∀cj ∈ Cpolk \ {ce} . ηbj(A) = ηbj(A− ε), and

ηbe(A) = ηbe(A+ ε),

then the response-time bound (given by Theorem 3) for γx is
lower than that for an instance activated at time A− ε.

Proof. Let γw be an instance of γ activated at time A − ε.
We show that Ibj (∆, N,A) = Ibj (∆, N,A− ε) and sibe(A) =

sibe(A− ε). Hence F ∗ as defined in Theorem 3 is the same for
γw and γx. The lemma follows since F ∗ −A<F ∗ − (A− ε).

In the definition of Ibe(∆, N, ta) only the term ETj (vj)
depends on the ta parameter. This term appears for any cj ∈
Cpolk \ {ce}. Since for each such cj by assumption ηbj(A) =
ηbj(A−ε), it follows that vj is equal for ta = A and ta = A−ε.
Therefore, Ibj (∆, N,A) = Ibj (∆, N,A− ε).

In the definition of sibe(ta), only the term ηbe(ta+ε) depends
on ta. Since ηbe(A + ε) = ηbe(A) it follows that sibe(A) =
sibe(A− ε) �

The search space for activation offsets is thus defined as

A , {0}∪{A ≤ A∗ | ηbe(A) 6= ηbe(A+ ε) ∨
∃cj ∈ Cpolk \{ce} : ηbj(A) 6= ηbj(A− ε)}.

2Addendum: this document has been revised to correct an accidental misuse
of notation in Lemma 18 (confusion of ηbe(A

∗) and sibi (ta)).

𝑐1 𝑐𝑙

𝑐0
𝜂 0 = 𝑏

𝜂 10𝑚𝑠 = 𝑏 + 1

f callbacks l callbacks

……

𝜂 10𝜇𝑠 = 2
𝜂 10𝑚𝑠 = 3

Fig. 3: Synthetic setup. The chain under analysis is shaded gray.

The analysis needs to consider only offsets in A. The response-
time bound for the subchain under analysis is then given by
the maximum result obtained via Theorem 3 for each A ∈ A.
If A∗, or either of the fixed-point solutions F ∗ and S∗ for any
A, cannot be found, then Theorem 3 is not applicable.

D. Combined Analysis

Theorems 2 and 3 are independent analyses that should be
used jointly: as neither dominates the other, it is generally
advisable to apply both analyses to each subchain and to use
the lesser of the two bounds on a per-subchain basis.

In the derivations of Theorems 2 and 3, no assumptions have
been placed on the number of callbacks in the chain under anal-
ysis γ. Both analyses can therefore also be used to bound the
response time of an individual polled callback by interpreting
the callback under analysis as a single-element chain.

VI. EVALUATION

We evaluated the proposed analyses on two case studies: a
synthetic callback graph, designed to assess each analysis’s
advantages and disadvantages, and a real-world callback graph,
to evaluate the analyses under realistic conditions.

The analysis by Casini et al. [3] serves as a baseline. We
compare it to the round-robin analysis in Theorem 2 (RR-
only), the busy-window analysis in Theorem 3 (BW-only), and
the combined analysis that computes the minimum of both
approaches (this-paper).

To distinguish effects due to analysis improvements from ef-
fects due to the refined execution-time model, we also compare
against variants of our analysis using only linear execution-time
curves (i.e., ET(n) , n · ET(1) for n ≥ 1). The resulting
execution-time curves are equivalent to assuming a scalar
WCET of ET(1) for each callback instance. Consequently, this
analysis variant removes the precision advantage of execution-
time curves while keeping analysis improvements in place. In
the figures, these variants are marked with the suffix “(wcet).”

Synthetic workload. The first case study, depicted in Fig. 3,
consists of a single executor containing only polled callbacks.
One callback, c0, is triggered in bursts of up to b activations at
once. The bursts are separated by at least 10 ms. A second set
of callbacks, c1 to cl, forms an intra-executor chain of length
l = 6. Callback c1 is activated by f callbacks (the fan-in)
located in the same executor, each with an activation curve that
mandates a 10µs distance between any two activations, but
10 ms between any three activations. To simplify comparisons
with the baseline, which supports only scalar WCETs, the setup

10



0 5 10 15 20 25 30

0.8

0.9

1.0
RT

 B
ou

nd
 (m

s)
RR-only (wcet)
BW-only (wcet)
baseline

(a) By burst length of c0

1 2 3 4 5 6 7 8 9

1

2

3

4

RT
 B

ou
nd

 (m
s)

RR-only (wcet)
BW-only (wcet)
baseline

(b) By width of the fan-in

Fig. 4: Response-time bound of the chain (synthetic workload).

is limited to scalar WCETs. The callback c0 has a WCET of
10µs, each callback in the chain has a WCET of 50µs, and
the fan-in callbacks have a WCET of 1µs each. The executor
is provisioned with a periodic supply of 700µs every one ms.

The experiment varies two parameters: b, the burst length of
c0, and f , the width of the fan-in. As the parameters vary, we
observe the response-time bound of the chain marked in Fig. 3.

Fig. 4a shows the response-time bounds reported by the three
analyses as b changes (for a fixed fan-in width f = 1). Since
this-paper is simply the minimum of RR-only and BW-only, it
is not shown separately. The plot shows a steadily increasing
response-time bound for both the baseline and BW-only. In
contrast, the RR-only bound stays flat after b = 14. At this point,
all processing windows involved in the chain are saturated with
instances of c0. Activating more instances of c0 therefore does
not increase the interference suffered by the chain. The results
show the importance of accounting for starvation freedom,
as both the baseline and the BW-only analysis significantly
overestimate the interference from c0.

Fig. 4b shows a second experiment in which we varied f ,
the width of the fan-in, for a fixed burst length of b = 10. The
plot shows that all variants achieve similar bounds at f = 1. As
the fan-in width increases, the BW-only response-time bound
also increases in reaction to the increased activation rate of the
chain. The RR-only analysis starts out similarly, but exhibits a
more rapid increase starting at f = 5. The baseline analysis
performs much worse, with particularly large jumps at f = 2
and f = 5. Overall, the BW-only bound improves upon the
baseline by a factor of at least 2× for f >1.

The baseline’s lower analysis precision is caused by its
lack of support for intra-executor fan-in. Since c1 has multiple
predecessors for f > 1, the baseline analysis needs to separately
bound the response time of the first fan-in callback and the
following l-element chain, oblivious to the fact that they
necessarily share a busy window. The BW-only analysis, in
contrast, analyzes the entire chain as a whole and correctly
accounts for busy-window constraints in all predecessors.

Overall, the two experiments show that both analysis
approaches, RR-only (Theorem 2) and BW-only (Theorem 3),
improve upon the baseline. Since they excel in different
situations, combining both approaches is advisable.

Real workload. In the second case study, we evaluated the

analyses on a callback graph extracted from a real ROS 2
system using the Navigation 2 package [17]. The model stems
from prior work [6], where it was obtained by measuring
all model-relevant parameters (such as execution-time curves
and activation frequencies) at runtime on a Turtlebot 3 robot
performing a simple navigation task. The robot ran ROS 2
version “Dashing,” so timers were privileged.

Fig. 5 shows the results for the 19 (out of 54) callbacks in the
system for which the response-time bounds are not trivial (e.g.,
due to lack of interference or extremely sparse activations).
Since the absolute values of the bounds vary heavily between
the callbacks, we instead show each bound as a ratio normalized
by the this-paper bound. All ratios exceed 1, which shows that
the analysis proposed in this paper produces lower response-
time bounds than the baseline and all three depicted variants of
the proposed analysis. For some callbacks (e.g., 7469/scan), the
baseline yields response-time bounds that are almost 80 times
larger than the bounds produced by our analysis. The baseline’s
bound is still about 25 times larger than the bounds given by
versions of the proposed analyses using linear execution-time
bounds (i.e., with the “(wcet)” suffix), which shows that the
bulk of the improvement in this case stems from analysis
improvements, specifically the round-robin analysis. Similar
gains are visible for, e.g., 7533/scan and 7556/tf-static.

The BW-only analysis also achieves significant improvements
over the baseline in some of the callbacks (e.g., 7469/scan
and 7533/tf-static). For about half the callbacks, the BW-only
analysis does not improve upon the baseline, though. The
reason is that the considered benchmark contains only few
intra-executor edges, which limits the impact of the improved
activation-curve propagation highlighted in Fig. 4b.

The results further show that the busy-window analyses
(baseline and BW-only) are not dominated by the round-robin
analysis: for instance, the RR-only bounds are significantly
worse for the 7469/tf callback. Again, this shows that it is best
to combine both analyses instead of using either in isolation.

Finally, the experiment clearly shows the benefits of using
a processor demand model that is more expressive than scalar
WCETs. Consider callback 7469/tf again: the response-time
bounds of the WCET-based version of this-paper differ from
the execution-time curve version by a factor of 60×. Assuming
that each callback instance runs for its full WCET obviously

11



7469/scan
7469/tf

7469/tf-st
atic
7533/scan

7533/tf

7533/tf-st
atic
7556/scan

7556/tf

7556/tf-st
atic

7567/amcl-pose

7567/odom

7577/amcl-pose

7577/amcl-pose

7577/gcm/cm-r

7577/gcm/cm-r

7577/gcm/p-ftpr

7577/gcm/p-ftpr

7577/odom
7577/odom

0

10

20

30

40

50

60

70

80
RT

 ra
tio

 v
s. 

th
is-

pa
pe

r
this-paper (wcet)
RR-only (wcet)

BW-only (wcet)
baseline

Fig. 5: Response-time bound of callbacks compared to the proposed analysis (lower is better).

leads to tremendous pessimism in the analysis of this callback.
Overall, the experiments confirm that both the round-robin

analysis (Sec. IV) and the busy-window analysis (Sec. V) are
needed, as both perform better than the other in some cases.
The proposed analysis performs significantly better than the
baseline, reducing response-time bounds by almost up to 80×
in the real-world case study.

VII. RELATED WORK

Casini et al. proposed the first response-time analysis of
ROS 2 processing chains [3]. Tang et al. [4] subsequently
provided a more precise analysis for the special case of
independent linear processing chains, at the cost of more limited
applicability (i.e., each callback can belong to only one chain).
Consequently, Tang et al.’s analysis [4] is not applicable to
the workloads considered in Sec. VI, which contain branching
processing chains.

In more distantly related work, Tang et al. [18] recently
developed an analysis for a ROS-inspired scheduler that
also exhibits a round-robin-like property. As their analysis
considers only systems of independent tasks, it does not
transfer easily to the kind of general ROS systems considered
herein. Furthermore, prior timing analyses for other graph-
based frameworks like OpenMP [19, 20] and Tensorflow [21]
share similar goals and some of the challenges studied herein.

Besides providing analytical guarantees, researchers have
explored real-time requirements in ROS 2 in a number of other
ways, including empirical studies on latency effects [22]–[26].
In another line of work, Choi et al. [5] and Staschulat et al. [27]
have explored alternative ROS executor designs with improved
time-predictability. In contrast, our focus is mainline ROS as it
is deployed by most ROS users today. Also targeting unmodi-
fied mainline ROS deployments, Blass et al. [6] proposed an
automated, introspection-based method for provisioning ROS
executors under reservation-based scheduling.

This paper adopts the execution-time curve model [7] to
represent processor demand. While this is a natural choice
in our context due to their similarity with activation curves,

the literature provides various alternative processor demand
models of varying complexity and expressiveness [28]–[30].

VIII. CONCLUSION

We have proposed a more precise response-time analysis
for ROS systems. The analysis improves upon prior work
through three key techniques: modeling processor demand as
execution-time curves instead of scalar WCETs, accounting for
the effects of quiet times and busy windows in the activation
curve derivation, and exploiting the round-robin behavior
of the ROS callback scheduler. The resulting analysis was
demonstrated in both a synthetic and a real-world case study
to yield significantly tighter response-time bounds compared
to prior work on the ROS default scheduler.

In future work, it would be interesting to revisit how recent
alternative executor designs [5, 27] compare to the default
executor once the round-robin property is taken into account.

ACKNOWLEDGEMENTS

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement no. 803111).
This work has been partially supported by the EU H2020
project AMPERE under the grant agreement no. 871669.

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler,
and A. Ng, “ROS: An open-source Robot Operating System,” in ICRA
Workshop on Open Source Software, 2009.

[2] T. Foote, “ROS Community Metrics Report 2020,” http://download.ros.
org/downloads/metrics/metrics-report-2020-07.pdf, 2020.

[3] D. Casini, T. Blass, I. Lütkebohle, and B. B. Brandenburg, “Response-
Time Analysis of ROS 2 Processing Chains Under Reservation-Based
Scheduling,” in Proceedings of the 31st Euromicro Conference on Real-
Time Systems (ECRTS), 2019.

[4] Y. Tang, F. Zhiwei, N. Guan, X. Jiang, M. Lv, Q. Deng, and W. Yi,
“Response Time Analysis and Priority Assignment of Processing Chains
on ROS2 Executors,” Proceedings of the 41st IEEE Real-Time Systems
Symposium (RTSS), 2020.

[5] H. Choi, Y. Xiang, and H. Kim, “PiCAS: New Design of Priority-
Driven Chain-Aware Scheduling for ROS2,” in Proceedings of the 27th
IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2021.

12

http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf
http://download.ros.org/downloads/metrics/metrics-report-2020-07.pdf


[6] T. Blass, A. Hamann, R. Lange, D. Ziegenbein, and B. B. Brandenburg,
“Automatic Latency Management for ROS 2: Benefits, Challenges, and
Open Problems,” in Proceedings of the 27th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2021.

[7] S. Quinton, M. Hanke, and R. Ernst, “Formal Analysis of Sporadic
Overload in Real-Time Systems,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2012.

[8] Object Management Group, Data Distribution Service (DDS), 2015.
[9] T. Blass, “Real-time Execution Management in the ROS 2 Framework,”

Ph.D. dissertation, to appear, 2022.
[10] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of

Deterministic Queuing Systems for the Internet, 2001.
[11] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,

“System level performance analysis - the SymTA/S approach,” IEE
Proceedings - Computers and Digital Techniques, 2005.

[12] L. Thiele, S. Chakraborty, and M. Naedele, “Real-Time Calculus for
Scheduling Hard Real-Time Systems,” in Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS), 2000.

[13] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling
Algorithms and Applications, Third Edition, 2011.

[14] D. Casini, L. Abeni, A. Biondi, T. Cucinotta, and G. Buttazzo, “Constant
Bandwidth Servers with Constrained Deadlines,” in Proceedings of the
25th International Conference on Real-Time Networks and Systems
(RTNS), 2017.

[15] G. Lipari and E. Bini, “Resource Partitioning among Real-Time Applica-
tions,” in Proceedings of the 15th Euromicro Conference on Real-Time
Systems (ECRTS), 2003.

[16] I. Shin and I. Lee, “Periodic Resource Model for Compositional Real-
Time Guarantees,” in Proceedings of the 24th IEEE Real-Time Systems
Symposium (RTSS), 2003.

[17] S. Macenski, F. Martı́n, R. White, and J. G. Clavero, “The Marathon 2: A
Navigation System,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

[18] Y. Tang, N. Guan, Z. Feng, X. Jiang, and W. Yi, “Response Time Analysis
of Lazy Round Robin,” Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2021.

[19] M. A. Serrano, A. Melani, R. Vargas, A. Marongiu, M. Bertogna, and
E. Quiñones, “Timing Characterization of OpenMP4 Tasking Model,” in
International Conference on Compilers, Architecture and Synthesis for
Embedded Systems (CASES), 2015.

[20] J. Sun, N. Guan, Y. Wang, Q. He, and W. Yi, “Real-Time Scheduling
and Analysis of OpenMP Task Systems with Tied Tasks,” in Proceedings
of the 38th IEEE Real-Time Systems Symposium (RTSS), 2017.

[21] D. Casini, A. Biondi, and G. Buttazzo, “Analyzing Parallel Real-Time
Tasks Implemented with Thread Pools,” in Proceedings of the 56th
Annual Design Automation Conference (DAC), 2019.

[22] J. Park, R. Delgado, and B. W. Choi, “Real-Time Characteristics of ROS
2.0 in Multiagent Robot Systems: An Empirical Study,” IEEE Access,
2020.

[23] T. Kronauer, J. Pohlmann, M. Matthe, T. Smejkal, and G. Fettweis,
“Latency Overhead of ROS2 for Modular Time-Critical Systems,” http:
//arxiv.org/abs/2101.02074, Tech. Rep., 2021.

[24] Y. Yang and T. Azumi, “Exploring Real-Time Executor on ROS 2,”
in IEEE International Conference on Embedded Software and Systems
(ICESS), 2020.

[25] Y. Maruyama, S. Kato, and T. Azumi, “Exploring the Performance
of ROS 2,” in Proceedings of the 13th International Conference on
Embedded Software (EMSOFT), 2016.

[26] C. S. V. Gutiérrez, L. U. S. Juan, I. Z. Ugarte, and V. M. Vilches,
“Towards a Distributed and Real-Time Framework for Robots: Evaluation
of ROS 2.0 Communications for Real-Time Robotic Applications,” http:
//arxiv.org/abs/1809.02595, Tech. Rep., 2018.

[27] J. Staschulat, I. Lütkebohle, and R. Lange, “The rclc Executor: Domain-
Specific Deterministic Scheduling Mechanisms for ROS Applications
on Microcontrollers: Work-in-progress,” in Proceedings of the 17th
International Conference on Embedded Software (EMSOFT), 2020.

[28] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The Digraph Real-Time
Task Model,” in Proceedings of the 17th IEEE Real-Time and Embedded
Technology and Applications Symposium, 2011.

[29] A. K. Mok and D. Chen, “A Multiframe Model for Real-Time Tasks,”
IEEE Transactions on Software Engineering, 1997.

[30] S. K. Baruah, “A General Model for Recurring Real-Time Tasks,” in
Proceedings of the 19th IEEE Real-Time Systems Symposium (RTSS),
1998.

13

http://arxiv.org/abs/2101.02074
http://arxiv.org/abs/2101.02074
http://arxiv.org/abs/1809.02595
http://arxiv.org/abs/1809.02595

	Introduction
	Background
	System Model
	Round-Robin Analysis
	Motivation
	Interference Bounds
	Response-Time Bound
	Eliminating ye

	Busy-Window Analysis
	Activation Curves
	Response-Time Bound
	Search Space for the Activation Offset A
	Combined Analysis

	Evaluation
	Related Work
	Conclusion
	References

