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Abstract—Parallel workloads most commonly execute onto
pools of thread, allowing to dispatch and run individual nodes
(e.g., implemented as C++ functions) at the user-space level.
This is relevant in industrial cyber-physical systems, cloud, and
edge computing, especially in systems leveraging deep neural net-
works (e.g., TensorFlow), where the computations are inherently
parallel. When using thread pools, it is common to implement
fork-join parallelism using blocking synchronization mechanisms
provided by the operating system (such as condition variables),
with the side effect of temporarily reducing the number of
worker threads. Consequently, the served tasks may suffer from
additional delays, thus potentially harming timing guarantees if
such effects are not properly considered. Prior works studied
such phenomena, providing methods to guarantee the timing
behavior. However, the challenges introduced by thread pools
with blocking synchronization cause current analyses to incur
a notable pessimism. This paper tackles the problem from a
different angle, proposing solutions to determine the optimal size
of a thread pool in such a way as to avoid the undesired effects
that arise from blocking synchronization.

I. INTRODUCTION

Thread pools are increasingly used in many different appli-
cations, including web services, cloud and edge computing,
robotics software, and especially in those systems leveraging
artificial intelligence and deep neural networks, where com-
putation is inherently parallel. In such settings, it is often
far more convenient to schedule a portion of computation in
user space as a function (e.g., a C++ function) scheduled by
a pool of ”worker” threads. For example, in the context of
robotics, the multi-threaded executor of ROS 2, a popular
middleware framework to manage robotics software, uses
a pool of threads to dispatch the workload [1]. In these
contexts, each application is commonly represented with a
directed acyclic graph (DAG), where nodes denote sequential
computation and edges precedence relations.

The advantages of thread-pool scheduling are even more
evident in the context of emerging applications based on deep
neural networks. To mention a concrete example, TensorFlow1,
a popular framework for deep neural networks (DNNs), makes
use of thread pools to schedule the workload due to deep neu-
ral networks [2]. Under this configuration, the InceptionV3 [3]
DNN running on a multicore platform originates more than
34, 000 sequential nodes [4]. In essence, these nodes are
implemented by user-space C++ functions because, with such

1When used in the standard configuration, i.e., in conjunction with the
Eigen mathematical library.

a massive number of nodes, it would be unviable to create a
thread for each of them.

On the other hand, TensorFlow, as well as robotics software,
web services, and cloud/edge computing, often require that
the executed workload is guaranteed to be completed within
an application deadline. Therefore, it is essential to correctly
predict the timing behavior of applications executed on behalf
of thread pools.

Two principal characteristics distinguish the scheduling of
parallel tasks using thread pools from the assumptions used
in usual schedulability tests that neglect them: (i) individual
nodes correspond to functions (e.g., C++ functions handled in
user-space in the case of TensorFlow) handled by user-space
threads and therefore the underlying operating system (OS)
is not aware of them, and (ii) fork-join parallelism is often
implemented through blocking synchronization mechanisms
(e.g., condition variables). These differences have significant
consequences on the resulting scheduling behavior. First, pre-
emption and migration of nodes (i.e., user-space functions)
among threads are commonly not supported. Second, when
they use the blocking synchronization primitives provided by
the OS, e.g., as extensively discussed in the following, the
corresponding blocking system call does not suspend only
the individual node calling it, but the whole thread serving
the node. Clearly, this temporary limits the number of worker
threads ready to execute functions, possibly creating additional
delays to the other nodes.

Previous work [4] proposed methods to account for these
undesired effects in the schedulability analysis, also showing a
considerable performance degradation with respect to theoreti-
cal bounds that do not consider these practical implementation
aspects that may be, however, often be used in practical
software systems.

Contribution. In this work, we propose a method to determine
the optimal number of worker threads to avoid additional
delays arising from the usage of blocking synchronization
mechanisms. To this end, this paper first describes the per-
formance degradation problem, also presenting the results of
a deep exploration of the thread pool behavior in TensorFlow
when used in conjunction with the Eigen mathematical library.
Then, we show how to design a thread pool resilient to the
concurrency limitation problem by configuring the number of
threads in the pool appropriately. In this way, state-of-the-art
real-time analyses (e.g., [5]) can still be used to determine



schedulability. We solve the problem of determining the pool
size in two different ways. First, we model the problem as a
flow-cut problem, and we show how this can be solved using
an integer linear programming (ILP) formulation. Second, we
model the problem as a maximum-weight independent set
problem, and we show that it can be solved in polynomial
time by converting the graph to a comparability graph. The
paper targets a global scheduling algorithm [6]. However,
Section VIII discusses how our results can be applied to
federated [7] and partitioned scheduling [8, 9]. Then, in the
evaluation, we compare the proposed method with the state-of-
the-art solution with both synthetic tasks and realistic graphs
based on state-of-the-art DNN.

II. THE CONCURRENCY LIMITATION PROBLEM

Next, we review the concurrency limitation problem (Sec-
tion II-A), and we describe its behavior in the context of Eigen
and TensorFlow (Section II-B) by presenting the results of a
deep code inspection we performed.

A. The Problem

We describe the behavior of a parallel task, modeled as
a directed acyclic graph (DAG), executed by a thread pool
and using blocking synchronization mechanisms, through the
example reported in Fig. 1(a), which consists of a simple fork-
join pattern.

The implementation of this example is reported in Alg. 1,
where: (i) a function v1v5() first executes the code logically
associated with node v1v5; (ii) it spawns a concurrent oper-
ation consisting of three child nodes (v2, v3, v4); (iii) upon
termination of the three nodes, it executes the code associated
with v5. Child nodes (vi, i=2,3,4 in Alg. 1) execute their code
and then signal their completion to v1v5(). Without loss of
generality, assume this parallel task to be executed in a pool
of two threads, which can execute in parallel in two physical
cores. The two threads act as computing elements for the
nodes (functions) of the parallel task: therefore, as illustrated
in Fig. 1, when function v1v5() suspends to wait for v2, v3,
and v4, the entire first thread suspends, leaving the three child
nodes with just one computing element to execute (i.e., the
second thread). This is because blocking synchronization is
performed by OS-level system calls, and the OS is not aware
of the user-space level scheduling of individual functions
executed by the pool, but just of its threads.

It follows that the usage of blocking synchronization mech-
anisms such as condition variables or synchronization barriers
may temporarily reduce the number of available computing
elements, i.e., threads, which could otherwise be used to serve
the execution of some nodes. Figure 1(c) shows how the
number of threads available for the execution of nodes varies
with time.

Fig. 1(e) shows another serious issue that may arise when
using thread pools with blocking synchronization mechanisms
without carefully designing the number of threads in the pool.
Indeed, Fig. 1(e) considers the case in which a pool of threads
is serving two identical parallel tasks, depicted in Fig. 1(a) and
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Figure 1: Effects of blocking synchronization mechanisms on
the number of available threads. Inset (b) and (e) illustrate two
possible execution of the graphs reported in inset (a) and (d),
in which the blocking synchronization worsen the performance
(inset (c)) or causes a deadlock (inset (f)).

.

(d), which use the same implementation reported in Alg. 1. As
shown in the timeline, it is possible that both threads execute
function v1v5(), suspending all the threads of the pool. In
this case, as noted in [4], a deadlock can occur, since there is
no other thread in which functions v2, v3, and v4 can run, for
each of the two parallel task instances.

However, as extensively discussed later, these shortcomings
can be avoided by adequately sizing the pool of threads when
adopting a global work-conserving scheduling algorithm. In
this way, the concurrency limitation phenomenon can be
avoided, making parallel tasks executed by thread pools and
blocking synchronization mechanisms prone to be analyzed
with state-of-the-art methods.

Algorithm 1 Blocking fork-join parallelism
1: procedure v1v5( )
2: execute v1()
3: fork v2(), v3(), v4()
4: wait for v2(), v3(), v4()
5: execute v5()
6: end procedure
1: procedure vi( ) . with i=2,3,4
2: execute vi()
3: signal completion to v1v5()
4: end procedure

B. Thread pools in Eigen

We discuss how Eigen (also adopted by TensorFlow)
uses blocking synchronization mechanisms to
implement precedence constraints by considering the
parallelFor() meta-function, implemented in the
TensorDeviceThreadPool.h file [10] of Eigen
and also used for implementing several DNN layers in



TensorFlow.2 A simplified version of such a function is
shown in Alg. 2. parallelFor() takes five parameters
in input: an input array I , its size N , an object describing
the computational cost of the operation to be parallelized
(e.g., a matrix multiplication or a max-pooling), a pointer to
a thread pool, and a pointer f to a function to be executed.
In essence, parallelFor() applies the function f to the
input I in a parallel manner. This is done by enqueueing
in the thread pool’s queue multiple occurrences of f, each
one acting on a mutually-exclusive subset of the indexes
of I. To this end, computeBlockParams(OpCost,
pool.size()) computes the number of elements
contained in each of such subsets, denoted as blockSize
(line 2), and the overall number of blocks (i.e., subsets)
blockCount. These parameters are computed according
to the computational cost of the function f (described
by the OpCost object) and the number of threads in
the pool. Then, a barrier object is initialized providing
blockCount as an input parameter, meaning that a thread
calling barrier.wait() is awakened after blockCount
calls to barrier.notify() have been issued (line 3).
Then, the handleRange() function is called, providing
the input data I, a range [0, N ] of indexes of I, the thread
pool pool, and the block size. When handleRange()
returns, parallelFor() blocks on the barrier (line 5).
The handleRange() function works as follows. Given
an interval [first, last] of indexes of the input I,
it recursively divides the interval into two parts, each one
handled by a recursive call of handleRange(), which are
enqueued in the queues of the pool (lines 14-15). The recursion
stops when the size of the interval (i.e., last-first) is
smaller than or equal to blockSize (line 8): in this case,
f is executed on the input range [first, last] of I, and
barrier.notify() is called, meaning that one of the
blockCount parallel operations have been completed
(line 10). When blockCount calls of f have been issued,
the thread that executed parallelFor() is awakened and
the parallel operation completes.

Fig. 2 illustrates the subgraph generated by a call to
parallelFor with an input size N = 100 and blockSize
= 25. The interval [0, 100) is first divided into two sub-
intervals [0, 50) and [50, 100), generating two corresponding
nodes. The two intervals are recursively divided into four
intervals [0, 25), [25, 50), [50, 75), [75, 100). Hence, four cor-
responding nodes are enqueued. Since the size of each of the
four intervals is equal to 25, the condition at line 8 of Alg. 2 is
fulfilled, and the function f is called as part of the execution of
the four nodes. Then, each of them notifies the barrier object,
allowing parallelFor() to complete.

To estimate how much blocking synchronization is used
in the execution of a DNN in TensorFlow, we refer to the
InceptionV3 [3] DNN.

2Note that newer versions of Eigen also include an asynchronous version
of parallelFor. However, all legacy versions of TensorFlow still need to
deal with the issues discussed in this paper.

Algorithm 2 Pseudocode of the parallelFor function (from
Eigen [10]).

1: procedure PARALLELFOR(I, N, OpCost, pool, f)
2: <blockCount, blockSize> ←
computeBlockParams(OpCost, pool.size())

3: barrier ← createBarrier(blockCount)
4: handleRange(I, 0, N, f, pool,
blockSize)

5: barrier.wait()
6: end procedure
7: procedure HANDLERANGE(first, last, pool, f, I,
blockSize)

8: if last - first ≤ blockSize then
9: f(I, first, last)

10: barrier.notify()
11: return
12: end if
13: mid ← midIndex(first, last)
14: pool->enqueue(handleRange, I, first,

mid, f, pool, blockSize)
15: pool->enqueue(handleRange, I, mid,

last, f, pool, blockSize)
16: end procedure
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Figure 2: Sub-graph generated by a call to parallelFor,
with N = 100 and blockSize = 25.

Such a network is mainly composed of average-pooling,
max-pooling, concat, softmax, and convolutional layers. The
first four types of layers directly use the parallelFor()
function described in Alg. 2, hence making use of blocking
synchronization mechanisms through the barrier object. The
remainder of the operations is mainly convolutions, which
do not use directly parallelFor(), but they instead rely
on more complex mechanisms for tensor contraction [11]
(see the file TensorContractionThreadPool.h [12]
of Eigen). However, at the beginning of each convolution,
a node starts the operation by queuing some initial nodes
in the thread pool’s queues. Then, the source node of the
convolution waits on a barrier, hence using again blocking
synchronization mechanisms. Such a node is awakened when
the convolution terminates. Internally, the convolution has
several internal fork-join operations. Such operations are not
based on blocking synchronization mechanisms but on atomic
variables used as counters, therefore combining blocking and



non-blocking synchronization.
This example highlights how blocking synchronization

mechanisms are used in almost every layer of a deep neural
network executed by TensorFlow and Eigen. Non-blocking
synchronization is also used in ubiquitous layers, i.e., con-
volutions. Hence, we conclude that providing a method for
determining the size of thread pools that allows re-using
existing results for studying the timing properties of parallel
tasks in the presence of both blocking and non-blocking
precedence constraints is of the utmost importance to provide
guarantees for DNNs executed by TensorFlow.

Which is the relevance of blocking synchronization beyond
Eigen? In this section, we reported a detailed overview of how
blocking synchronization can be harmful to real-time perfor-
mance in the context of Eigen and TensorFlow. But the rele-
vance of the problem goes beyond these two libraries. Indeed,
both thread pools and blocking synchronization mechanisms
such as barriers and condition variables are commonly used by
programmers in many applications3 with some form of timing
requirements (e.g., soft real-time). Clearly, with this problem
in mind, a developer designing a new application using thread
pools from scratch to achieve timing predictability will never
use blocking synchronization, opting for a solution with non-
blocking synchronization. However, most applications are not
written - as new - from scratch. Instead, it is common that
pre-implemented and easy-to-use functionalities are integrated
into new systems (e.g., coming from software libraries). These
might use mechanisms such as condition variables to syn-
chronize since they are widely used programming paradigms.
Therefore, our efforts aim to generalize the problem beyond
Eigen and TensorFlow and provide application integrators with
a principled way of determining the thread pool size when they
require to use it to run pre-existing software modules that make
use of blocking synchronization.

Which is the relevance of finding the optimal size of a
thread pool?

Then one may argue about the relevance of finding the opti-
mal size of a thread pool, while a conservative approximation
could just suffice. However, creating additional threads is not
for free, as it implies the allocation of memory and induces
CPU multiplexing overheads. Several prior works highlighted
the relationship between the performance and the pool size,
concluding that significant degradation of the average-case per-
formance can be observed with oversized thread pools [17, 18].
Other works also show that oversized pools are problematic
for performance due to system-level overheads caused by the
congestion at I/O interfaces and scheduling [19].

Therefore, avoiding wasting resources on unneeded threads
is essential, especially on resource-constrained embedded/edge
platforms. Thus, a designer faces conflicting requirements:
on the one hand, having enough threads to allow bounding

3For example, thread pools are used by the Tasking Framework by the DLR,
the German research center for aeronautics and space [13]–[15], and by the
Task Management API (MTAPI) used as part of the Embedded Multicore
Building Blocks (EMBB) [16] by Siemens).

response times at design time by using existing techniques
but, on the other hand, avoiding introducing too many threads
to minimize the overhead. Next, we propose configuring the
thread pool based on this reasoning: create additional threads
to enable real-time analysis, but no more than needed by
minimizing their number.

III. SYSTEM MODEL

This paper studies a set of parallel directed acyclic graph
(DAG) tasks Γ = {τ1, . . . , τn} running on a multi-core
platform with m identical processors, where a dedicated pool
of threads schedules each task. For each task τ ∈ Γ, we
assume at most one of its instances to be pending at the same
time4; for this reason, for brevity, we often refer to the (only)
pending instance of τ by referring to τ itself. As discussed
more extensively later in the paper, the problem addressed
hereafter is an intra-task phenomenon, i.e., it can be solved by
considering each thread in isolation. Therefore, for simplicity,
in the rest of the paper, we omit the notation that would be
needed for denoting multiple tasks, considering an arbitrary
task τ under analysis.
Task Model. Each DAG task is scheduled by a dedicated pool
of threads Φ = {φk : k = 1, . . . , |Φ|}. Each task is described
by a DAG G = {V,E}, with V denoting the set of all nodes
vj ∈ V in the graph, and each edge (vp, vs) ∈ E ⊆ V × V
denoting a precedence constraint between nodes, meaning that
vs cannot start before vp is completed. Each node vi represents
a sequential computation. A node without incoming edges is
called source node, whereas a node without outgoing edges
is called sink node. A task can release a potentially infinite
sequence of instances. Each instance is said to be pending
from its release to when it completes. A task completes when
all its sink nodes are completed. A node v is ready when the
corresponding task is ready and all precedence constraints of
v are satisfied.

Given an edge (vp, vs) ∈ E, vp is a direct predecessor of
vs and vs is a direct successor of vp. We denote with the
symbols pred(vi) and succ(vi) the set of predecessors and
successors of vi, which include precedence relations that are
either direct (by means of an edge) or indirect (by means of
multiple edges and intermediate nodes).

A thread φk is said to be ready when it has pending nodes
to execute. Similarly, a node vi ∈ V is said to be ready when
it is eligible to execute according to precedence constraints.
Scheduling. We consider threads to be scheduled under
a global work-conserving scheduling algorithm. A work-
conserving scheduler is a scheduler that never idles a core
if there exists a ready thread to execute. For example, a con-
figuration compatible with this assumption can be obtained by
executing TensorFlow on Linux, e.g., configuring each thread
to have a fixed priority using its SCHED_FIFO scheduling
class. The workload executed within each thread pool Φ is
also globally scheduled; namely, the workload is enqueued in

4This assumption is, for example, fulfilled by any schedulable task set with
constrained deadlines.



NB

BF

BC

BC

BJ

BC

BC

parallelized operation subgraph (SG)

BC BF

BC

BJ

BC

BF

BC

BJ

BC

BF

BC

BJ

BC

BF

BC

BJ

BC

NB

BF

BC

BJ

BC
SG1

SG2

SG3

SG4

SG5

SG6

NB

NB

NB

NB

Figure 3: Example of graph compliant with the system model
of Section III.

a single (logical) queue, which can be accessed by all the
threads φk of the pool Φ.
Node types. Following [4], we model precedence constraints
obtained with and without blocking synchronization mecha-
nisms with a node type xi ∈ X = {BF, BJ, BC, NB}
associated with each node vi, with the following meaning:
• A node of type BF (blocking fork) exhibits the behavior

shown for node v1 of Alg. 1 (i.e., lines 2,3, and 4 of
v1v5()), i.e., (i) it possibly perform some computation,
then (ii) spawns some child nodes and (iii) as its last
operation, it waits on a synchronization barrier, causing
the thread that served it to suspend. The set of all nodes
of type BF is defined as V BF = {vi ∈ V : xi = BF}.

• A node of type BJ (blocking join) is associated with a
node of type BF and executes when all the child nodes
spawned by the corresponding BF node signaled their
completion (e.g., node v5 of Alg. 1, line 5 of v1v5()).
For each vi ∈ V BF the function J (vi) denotes the
associated BJ node.

• The type BC (child of blocking nodes) is assigned to each
node vi ∈ V : xi /∈ {BF,BJ} in a sub-graph delimited by
a pair of nodes of type BF and BJ, respectively. For each
of these nodes, the function F(vi) is defined to return
its BF node, and given a BF node vf ∈ V BF, V BC(vf )
denotes the set of the associated BC nodes.

• Other nodes are of type NB (non-blocking).
Each pair of BF and BJ nodes then delimits a subgraph of

nodes. The set of subgraphs using blocking synchronization
is denoted as S, and the i-th subgraph is denoted as SGi.
Subgraphs originated by pairs of nodes of type BF and BJ
cannot be nested. Furthermore, it is assumed that internal
nodes of each subgraph are not connected with the remainder
of the graph. Specially, the BF and BJ node of a subgraph can
have only incoming and outgoing edges from/to nodes outside
the subgraph, respectively. Nodes of type BC can be connected
either with other BC nodes of the same subgraph, with the BF
node by means of incoming edges (to the BJ node), and with
the BJ node through outgoing edges.

An example of a parallel task is reported in Fig. 3, where the
node type is reported for each node. As it is shown in Fig. 3
each subgraph SG that is delimited by each pair of nodes of
type BF and BJ contains nodes that are not directly connected
with the remainder of the DAG, as it happens in the Eigen-
level parallel implementation of a DNN layer. The model also
supports hybrid graphs where both fork-join structures using
blocking and non-blocking synchronization co-exist (as in the

lower part of Fig. 3).
Notation. The main notation adopted throughout the paper is
summarized in Section I.

Table I: Main notation adopted throughout the paper.

Symbol Description
m number of cores
τ an arbitrary task under analysis
Φ the threadpool that manages τ
|Φ| the number of threads of Φ

φk the k-th thread of Φ

G the DAG of τi
V the set of nodes in G
E the set of edges in G
vi a node vi ∈ V

(vi, vj) an edge in E
pred(vi) the set of predecessors of vi
succ(vi) the set of successors of vi

X the set of node types (X = {BF, BJ, BC, NB})
xi the node type of vi
V BF the set of nodes of type BF
V BC(vf ) the set of BC nodes of vf ∈ V BF

J (vf ) the BJ node associated with vf ∈ V BF

F(vi) the BF node vf associated with vi ∈ V BC(vf )

S the set of subgraphs using blocking synchronization
SGi the i-th subgraph in S
p(τ, t) current parallelism of a task τ at time t
d(Φ, τ, t) desired concurrency of the thread pool Φ at t
l(τ, t) available concurrency of the thread pool Φ of τ at t

IV. PROBLEM FORMALIZATION

We start by providing some definitions useful to formalize
the problem addressed in this paper. We begin with the concept
of current parallelism of a DAG task.

Definition 1 (Current parallelism of a task τ). The current
parallelism of a task τ at a time t is the number p(τ, t) of
nodes of τ that can run in parallel according to precedence
constraints at time t in an arbitrary schedule.

It is worth noting that the notion of parallelism is, in general,
different from the notion of concurrency because the latter is
subject to the additional constraint that the task runs on a
physical machine with a bounded number of cores. This leads
to the following definition.

Definition 2 (Desired concurrency of the thread pool Φ). The
desired concurrency d(Φ, τ, t) of a thread pool Φ at a time
t is the maximum number of threads that would be able to
run in parallel with m cores given the current parallelism
of the graph if no BF node suspended any thread of Φ, i.e.,
d(Φ, τ, t) = min(p(τ, t),m).

Intuitively, the desired concurrency d(Φ, τ, t) is the maxi-
mum allowed parallelism that τ can have at t on a physical
platform with m core when all the threads of its pool are



simultaneously executing, and none of them is suspended due
to blocking synchronization. Note that, in the presence of
multiple tasks handled by different pools, the actual concur-
rency can be lower than d(Φ, τ, t) even without using blocking
synchronization mechanisms. However, such a reduction is due
to the scheduling of threads at the operating system level,
whose effect is already accounted for in state-of-the-art real-
time analyses (e.g., [20]).

However, the number of worker threads that can actually be
used to serve nodes of τ may be less than d(Φ, τ, t) due to the
usage of blocking synchronization. Therefore, we introduce
the concept of available concurrency.

Definition 3 (Available Concurrency). The available concur-
rency l(τ, t) of a pool Φ at time t is defined as the number
of threads in Φ that are not suspended due to blocking syn-
chronization, i.e., those which are ready to execute workload
at t. Threads in Φ that are not suspended due to blocking
synchronization are said to be available threads of Φ.

The available concurrency is graphically shown in insets (c)
and (f) of Fig. 1.

Therefore, a performance degradation occurs when the
desired and available concurrency does not match.

Definition 4 (Performance Degradation due to Limited Con-
currency). A task τ ∈ Γ managed by a pool Φ is said to suffer
performance degradation due to limited concurrency at a time
t when l(τ, t) ≤ d(Φ, τ, t), i.e., when the number of available
threads at t is less than the one that would have been available
when blocking synchronization is not used.

From a real-time analysis standpoint, the condition l(τ, t) ≤
d(Φ, τ, t) has further implications. Indeed, if not satisfied, it
means that the parallel application cannot be analyzed with
state-of-the-art real-time analysis techniques for DAG tasks
under global scheduling because they do not account that a
computational unit (in this case, a thread) might be unavailable
due to the usage of blocking synchronization mechanisms.

Therefore, the key research question of this paper is defined
as follows.

Research Question. How can the proper thread pool size |Φ|
be selected to avoid, by design, the performance degradation
phenomenon due to limited concurrency?

The key observation is the following. Suppose the thread
pool is properly (over)-dimensioned. In this case, the reduced-
concurrency phenomenon can be eliminated: this is because
when thread blocks due to a BF node, there is always another
thread ready to run in place of the blocked one, if needed,
since the global scheduler will select it to run due to the
work-conserving property. Therefore, we show next how to
determine the optimal (i.e., minimal) number of threads to
configure a thread pool for its parallel task.

V. DETERMINING THE SIZE OF THE POOL

First, note that since each task τi ∈ Γ is assigned to a
dedicated pool Φ, the concurrency limitation is an intra-task

phenomenon, i.e., the execution of BF, BC, and BJ nodes of
τi affect only the number of available threads of Φ. Then, it
follows that we can study the concurrency limitation problem
separately for each task τi ∈ Γ.

Based on previous observations, Lemma 1 states a condition
to avoid performance degradation due to limited concurrency.

Lemma 1. If

∀t ≥ 0, l(τ, t) ≥ d(Φ, τ, t) (1)

then τi does not suffer performance degradation during its
execution.

Proof. It directly follows by applying Definition 4 ∀t ≥ 0.

Therefore, the next step is to compute l(τ, t). To this end,
we leverage the following two observations.

Observation 1. The available concurrency l(τ, t) decreases
by one every time a BF node terminates its execution.

Observation 2. The available concurrency l(τ, t) increases
by one every time a BJ node becomes ready.

This leads to the following definition.

Definition 5. Given an arbitrary schedule at a time t, nB(t)
denotes the number of BF nodes vj ∈ V BF of τi ∈ Γ that are
completed at time t while the corresponding BJ node J (vj)
is not ready at t.

We can now derive a closed-form formula for l(τ, t).

Lemma 2. Given an arbitrary schedule and a time t, the
available concurrency l(τ, t) is

l(τ, t) = max(0, |Φ| − nB(t)), (2)

Proof. Note that the available concurrency is always greater
than or equal to zero. Given an arbitrary schedule and a time t,
there are nB(t) threads blocked (Definition 5), where each one
reduces the available concurrency by one (by Observation 1
and Observation 2). Therefore, with a thread pool of size |Φ|,
there are |Φ| − nB(t) available threads at t.

However, using Lemma 1 and Eq. (2) requires dealing with
an impractical continuum due to the presence of the universal
quantifier and the dependency on time t. Therefore, we seek to
find for a value l(τ), independent of the time, such that l(τ) ≤
l(τ, t) holds for any possible schedule and ∀t ≥ 0. Given
Eq. (2), l(τ) is found by searching the maximum number nB

of BF nodes vj ∈ V BF of τ ∈ Γ that completed while the
corresponding BJ node J (vj) is not ready yet in any possible
schedule and then using

l(τ) = max(0, |Φ| − nB). (3)

The derivation of nB is extensively discussed next in
Section VI. If l(τ) is known, the thread pool size |Φ| can
be set in such a way to guarantee the condition of Lemma 1.

However, note that also d(Φ, τ, t) = min(p(τ, t),m) de-
pends on t through p(τ, t). This dependency with the time



can be solved in two ways: (i) by assuming that the minimum
is always resolved to m, thus assuming that the parallel task
is parallel enough to always occupy all the physical core of
the platform; or (ii) by finding a bound to the maximum
parallelism of the DAG that does not depend on the time (a
polynomial time method is discussed in Section VI-B).

Independent on which of these methods is used to compute
the maximum parallelism, let d(Φ, τ) be a bound on d(Φ, τ, t)
such that ∀t ≥ 0, d(Φ, τ) ≥ d(Φ, τ, t).

Then, Theorem 1 states a condition on how to set the thread
pool size |Φ| to avoid performance degradation due to limited
concurrency.

Theorem 1. If
|Φ| ≥ d(Φ, τ) + nB , (4)

then the corresponding task τ ∈ Γ does not suffer performance
degradation due to limited concurrency.

Proof. By Lemma 1, τ ∈ Γ does not suffer performance
degradation due to limited concurrency if ∀t ≥ 0, l(τ, t) ≥
d(Φ, τ, t). By definition of l(τ) and d(Φ, τ), ∀t ≥ 0, l(τ) ≥
l(τ, t) and ∀t ≥ 0, d(Φ, τ) ≥ d(Φ, τ, t) Therefore, by Eq. (3),
it follows l(τ) = |Φ| − nB ≥ d(Φ, τ). The theorem fol-
lows.

Theorem 1 provides a condition for setting the size of the
thread pool in such a way to avoid performance degradation
due to the usage of blocking synchronization. This is obtained
by possibly having more threads in the pool than total con-
currency. In turn, this may imply having more threads than
the number of cores: in this case, if d(Φ, τ, t), at most m
threads can run in parallel, with the other |Φ| −m threads in
a ready (but not executing) state that are set to replace any
running thread that suspends on a blocking synchronization
barrier, thus avoiding the available concurrency to fall below
the desired concurrency.

VI. DERIVING THE EXACT nB

Next, we propose two possible problem formulations to
derive the exact nB . The first one directly leverages Obser-
vation 1 and Observation 2, modeling the problem as a flow-
cut, and proposing a mixed-integer linear formulation that
finds a solution without requiring any graph transformation.
The second solution instead formulates the problem as a
maximum weighted independent set problem, and it allows
finding nB in polynomial-time after transforming the graph
to a comparability graph.

A. Modeling the problem as a flow-cut

We start defining the concept of flow-cut of a DAG.

Definition 6 (Flow-cut). A flow-cut of a DAG G is defined as
a partition of the set of nodes Vi into two disjoint sets V1 and
V2, such that ∀vi ∈ V2, succ(vi)∩V1 = ∅, with V1∩V2 = ∅
and V1 ∪ V2 = V.

Next, we show that nB can be found by modeling the
problem as a flow-cut. We start with a key observation.

Observation 3. A subgraph SGi ∈ S causes a reduction of the
available concurrency if and only if: (i) the BF node completed
its execution, and (ii) at least one of its BC nodes are pending.

In Observation 3, (i) follows from Observation 1, and (ii)
from Observation 2, as the BJ node of a subgraph SGi

becomes ready only when all the BC nodes of the same
subgraph SGi completed.

Based on the previous observation, Theorem 2 shows that
the problem of finding nB(t) can be solved as a flow-cut
problem.

Theorem 2. nB(t) can be computed by counting the number
of nodes vf ∈ V BF in the first partition V1 that have at least
one of the corresponding BC nodes vi ∈ V BC(vf ) in V2, with
V1 and V2 defined as in Definition 6.

Proof. We consider an arbitrary instance of τ, an arbitrary
time t, and an arbitrary flow-cut, with the following meaning
for sets V1 and V2: V1 includes all the nodes that have already
completed in the considered instance of τ at an arbitrary point
in time t, and V2 all the nodes that are not completed yet. For
any possible schedule following the precedence constraints,
this definition of V1 and V2 is a valid flow-cut according
to Definition 6 and includes all possible valid schedules
according to precedence constraints.

By Definition 6, nB(t) counts the number of BF nodes
vj ∈ V BF of τ that completed at time t while the corresponding
BJ node J (vj) is not ready at t. Therefore, leveraging Obser-
vation 3, nB(t) is found in one of the flow-cuts where: (a) the
BF node completed, (b) at least one of the corresponding BC
nodes not completed yet, thus preventing the BJ node from
becoming ready for execution. This means that a subgraph
SGx ∈ S needs to have at least one BC node in V2 to
be included in nB(t). Therefore, it follows that nB(t) can
be found by counting the number of BF nodes in V1 (i.e.,
completed) that have at least one of its BC nodes in V2 (i.e.,
not completed).

By leveraging Theorem 2, the following corollary follows.

Corollary 1. nB can be computed by counting the number
of nodes vf ∈ V BF in V1 in the flow cut that maximizes the
number of BF nodes in V1 that have at least one of its BC
nodes in V2.

A solution based on an ILP formulation. The flow-cut
problem presented in Theorem 2 can be solved with an integer
linear programming formulation, using the following variables:
• For each edge (vj , vx) ∈ E, CTj,x ∈ {0, 1} is equal to 1

if and only if vj ∈ V1 and vx ∈ V2.
• For each node vj ∈ V, V1j ∈ {0, 1} is equal to 1 if and

only if vj ∈ V1.
• For each node vf ∈ V BF, for each node vj ∈ V BC(vf ),

BNf,j ∈ {0, 1} is equal to 1 if and only if vf ∈ V1 and
vj ∈ V2.

• For each node vf ∈ V BF, BGf ∈ {0, 1} is equal to 1 if
and only if vf ∈ V1 and, for at least one of its BC nodes
vj ∈ V BC(vf ), it holds vj ∈ V2.



The objective function maximizes the number of BF nodes
that are in V1 while at least one of its BC node is in V2, i.e.,
maximize

∑
vf∈V BF BGf .

The optimization problem is subject to the following set of
constraints. We use the so-called big-M formulation, where the
symbol M is defined to denote a large constant representing
infinity.
Constraints. A variable CTj,x is equal to one if and only if the
edge connecting vj and vx are literally cutting the graph into
the two disjoint sets, i.e., if vj ∈ V1 and vx ∈ V2: differently,
V1j is equal to one for any node belonging to V1, also if it
does not have an edge connecting to a node in V2. Constraint 1
enforces the definition of CTj,x and V1j .

Constraint 1. For each (vj , vx) ∈ E,

CTj,x ≥ V1j − V1x. (5)

For each (vj , vx) ∈ E and vl ∈ pred(vj) ∪ vj ,

V1l ≥ CTj,x. (6)

For each (vj , vx) ∈ E and vs ∈ succ(vx) ∪ vx,

V1s ≤ 1− CTj,x. (7)

Proof. For each edge (vj , vx) ∈ E, the first constraint ensures
that, if vj ∈ V1 and vx ∈ V2, then (vj , vx) is in the cut.
This occurs when V1j = 1 and V1x = 0, which enforces
CTj,x ≥ 1. In all other cases, the first constraint has no effect
as it enforces either CTj,x ≥ −1 or CTj,x ≥ 0.

For each edge (vj , vx) ∈ E and for each vl ∈ pred(vj) ∪
vj , we enforce that if (vj , vx) is in the cut, then vj and
all its predecessors are in V1. This is guaranteed by the
second constraint, which enforces V1l ≥ 1 to all predecessors
if (vj , vx) is in the cut, and it has no effect otherwise
(V1l ≥ 0). Similarly, for each edge (vj , vx) ∈ E and for
each vs ∈ succ(vx) ∪ vx, we enforce that if (vj , vx) is in
the cut, then vx and all its successors are not in V1. This is
guaranteed by the third constraint, which enforces V1s ≤ 0
to all successors if (vj , vx) is in the cut, and it has no effect
otherwise (V1s ≤ 1).

A variable BNf,j is equal to one if and only if a BF node
vf ∈ V BF is in V1 and the other node vj ∈ V BC(vf ) is in V2.

Constraint 2 enforces this definition.

Constraint 2. For each vf ∈ V BF, for each vj ∈ V BC(vf ),

BNf,j ≥ V1f − V1j , BNf,j ≤ V1f , BNf,j ≤ 1− V1j , (8)

Proof. The constraint enforces BNf,j = 1 if vf is in Vi,1 and
vj is not in V1. This occurs when V1f = 1 and V1j = 0,
which enforces BNf,j = 1. For all other values of V1f and
V1j , the constraint enforces BNf,j = 0.

Finally, Constraint 3 enforces the definition of BGf , which
is the set of variables subject to the maximization. Variables
BGf extends variables BNf,j by selecting only nodes vf ∈
V BF ∩ V1 that have at least one of their BC nodes in V2. For
the last constraint, we define the following decision variable.

• For vf ∈ V BF and for each vj ∈ V BC(vf ), the boolean
variable Af,j is defined such that

∑
vj∈V BC(vf )

Af,j = 1.
Variables Af,j serve the purpose to count only once the
reduction of concurrency due to a node vf ∈ V BF through
variables BNf,j .

Constraint 3. For each vf ∈ V BF, for each vj ∈ V BC(vf ),

BGf ≤ BNf,j +(1−Af,j) ·M, BGf ≥ BNf,j−(1−Af,j) ·M,
(9)

Proof. The constraint enforces BGf to be equal (i.e., both ≥
and ≤) to one (since

∑
vj∈V BC(vf )

Af,j = 1) of the BNf,j , i.e.,
the one with Af,j = 1. In all the other cases, the constraint
has no effect (i.e., it is equivalent to enforce BGf ≤ ∞ and
BGf ≥ −∞). The solver is forced to selected a value BNf,j =
1, if any, due to the maximization in the objective function.
The constraint follows.

It is worth noting that the solution obtained by the pro-
posed ILP formulation returns the exact nB (as nB =
max

∑
vf∈V BF BGf ) and not an upper bound: indeed, as noted

in the proof of Theorem 2, there exist an actual possible
schedule according to the precedence constraints leading to
the computed nB . This allows setting the optimal size for
the thread pool. The proposed solution is flexible, and it can
be applied directly on the DAG G with no transformation
and allows extending the problem with additional modeling
features by just adding other constraints. However, it can suffer
from scalability issues in the case of large DAGs. Therefore,
we discuss next a different solution to compute nB using a
graph transformation.

B. Computing nB as a Max-Weight Independent Set problem

This section shows how to map the problem of computing
nB to a maximum weight independent set [21] problem by
means of a graph transformation, with the key advantage of
enabling a polynomial-time solution.

Given a subgraph SGi ∈ S, we define the concurrency-
reduction block CRi as a special type of node that is pending
if at least one BC node vj ∈ SGi is pending.

Definition 7 (Transformed Graph). Given a DAG G = (V,E),
the transformed graph G′ = (V ′, E′) is obtained by substitu-
tion of all the BC nodes of each subgraph SGi ∈ S , with a
corresponding concurrency-reduction block CRi.

By construction, when a concurrency-reduction block is
pending, the available concurrency reduces by one. There-
fore, the problem reduces to finding the independent set of
concurrency-reduction blocks with maximum cardinality in
G′. To start, we recall the definition of independent set.

Definition 8 (Independent Set). A set I ⊆ V is an independent
set if no two nodes in I ⊆ V are connected in V, either directly
(by means of an edge), or indirectly (via intermediate nodes
and multiple edges).

By associating a weight equal to one to each concurrency-
reduction block and a weight equal to zero to each other node
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Figure 4: Graph transformations to compute nB as a max-
weight independent set problem in polynomial time.

in the graph G′, the independent set of concurrency-reduction
blocks with maximum cardinality can be found as an instance
of the maximum-weight independent set problem.

Theorem 3. nBi can be found as the sum of the weights of the
set resulting from a maximum-weight independent set problem
after assigning to each CRi ∈ G′ a weight equal to one, and
a weight equal to zero to each other node.

Proof. By Observation 3, a subgraph SGi ∈ S reduces the
available concurrency by one when (i) the BF node completed
its execution, and (ii) at least one of its BC nodes are
pending. By definition, a concurrency reduction block CRi

of a subgraph SGi ∈ S is pending when at least one of its BC
nodes is pending. Therefore, the maximum number of nBi is
reached when the maximum number of concurrency-reduction
blocks are pending at the same time according to precedence
constraints. Since each CRi ∈ G′ has a weight equal to one,
and all other nodes a weight equal to zero, the problem is
equivalent to maximizing the weighted independent set (to
count only concurrency-reduction blocks that can be pending
at the same time) of nodes in G′. nBi can then be computed
as the sum of the weights in the resulting set. The theorem
follows.

This problem is NP-hard [6, 22] for arbitrary graphs. How-
ever, it can be solved in polynomial time for comparability
graphs by applying the Ellipsoid method [23]. Therefore, we
next recall the definition of comparability graph and we show
how to convert G′ into a comparability graph.

Definition 9 (Comparability Graph). A comparability graph
C is an undirected graph in which it is possible to orient
each edge such that the resultant graph has the following
properties:

1) Anti-symmetry: if an edge (vi, vj) exists, then an edge
(vj , vi) does not.

2) Transitivity: if two edges (vi, vj) and (vj , vl) exist, then
also (vi, vl) exist.

Both G and G′ can be converted into comparability graphs:
indeed, anti-symmetry is respected by the definition of DAG
(because it is acyclic), and transitivity is satisfied by adding
“dummy edges” from each node to all its successors, without
altering the edge’s semantics of a precedence constraint.
Therefore, the comparability graph C of G′ is obtained by
applying the transitive closure and removing orientation.

Fig. 4 summarizes the transformations required to apply
the method proposed in this section. Once C is obtained,
it is possible to solve the maximum weight independent set

problem (via the Ellipsoid method [23]) in polynomial time
and computing nB as the sum of the weights in the set.
The maximum parallelism of a DAG. In Section V, we noted
that also d(Φ, τ, t) = min(p(τ, t),m) depends on t through
p(τ, t), which is needed for applying Lemma 1. Similar to the
problem just discussed, also the problem of finding the maxi-
mum parallelism can be solved as a maximum independent set
problem, which is NP-hard for general graphs [22]. Also in this
case, however, the problem can be solved using comparability
graphs for the DAGs considered in this paper in polynomial
time. Alternatively, other polynomial-time algorithms have
been proposed for specific cases, e.g., fork-join tasks [6].

VII. PREVIOUS WORK ON UPPER-BOUNDING nBi

Next, we discuss two methods to obtain an upper-bound on
nBi . The first one comes from [4]. The authors of [4], while
solving the problem of guaranteeing the absence of deadlocks,
noted that, for each arbitrary node vi ∈ V, the BF nodes that
can affect the execution of vi are those contained into the set:

X (vj) =

{
{vx ∈ V BF-par

i (vj)} ∪ F(vj) if xj = BC

{vx ∈ V BF-par
i (vj)} otherwise,

(10)

where V BF-par(vi) = {vj ∈ V BF \ (pred(vi) ∪ succ(vi))}.
Then, they propose to bound nB as the maximum cardinality
of X (vi) for each vi ∈ V. However, this method (which
is referred to as UB-1 hereafter in this paper) may provide
a much larger estimate of nB with respect to what can be
actually observed in a real schedule. As an example, consider
the DAG of Fig. 3: while the approach proposed in this paper
(which is referred to as EXACT hereafter) returns nBi = 2,
UB-1 bounds nBi with 6, thus causing a significant over-
dimensioning of the thread pool using Theorem 1. This is
because subgraphs originated by pairs of BF and BJ nodes
connected in series are subject to a precedence constraint:
for example, subgraphs SG2 and SG4 (or SG3 and SG5)
cannot have simultaneously their BF nodes completed while
the corresponding BJ node is not ready yet. Therefore, they
cannot reduce the available concurrency simultaneously as
there can be only at most one pending instance of each
task. An improved bound, not presented in [4], (called UB-2)
on nBi is obtained by observing that subgraphs connected
in series can never have more than one BF node that is
completed with its corresponding BJ node is not ready. By
leveraging this observation, we can bound nBi similarly as
for UB-1 but accounting only once for sequences of BF-
BJ subgraphs connected back-to-back (i.e., the BJ node of
a subgraph has only one outgoing edge connecting to the BF
node of a following BF-BJ subgraph, which in turn has only
one incoming edge). In this way, with UB-2 nBi is bounded
with 4 for the graph of Fig. 3, since the subgraphs pairs SG2
and SG4, and SG3 and SG5, are counted only once for each
pair, respectively. Both UB-1 and UB-2 have a polynomial-
time complexity in the number of nodes and edges. These
methods are used for comparison in the evaluation.



VIII. APPLYING THE PROPOSED SOLUTION

This section presents potential cases that can benefit by
applying the proposed solution.

A. Federated Scheduling

Background. The federated scheduling paradigm [7] di-
vides a set of periodic parallel implicit-deadline tasks Γ =
{τ1, . . . , τn} with period Ti and deadline Di = Ti that need
to run in a multicore platform into two disjoint sets: heavy and
light tasks. A task τi is characterized by its volume Ci, i.e., the
sum of the WCETs of all its nodes, and its critical-path length
Li, i.e., the largest sum of WCETs over a path of the graph
of τi. A task τi is a heavy task if its utilization Ui = Ci/Ti is
greater than one; otherwise, it is a light task. Each heavy task
is allocated to a dedicated cluster of processors, where global
scheduling is applied. Light tasks run sequentially on a cluster
composed of the remaining cores. For each heavy task τi, the
number of dedicated cores to be assigned is computed as

hi =

⌈
Ci − Li

Di − Li

⌉
(11)

A task set is then deemed schedulable if there are enough cores
to accommodate all heavy tasks and light tasks are schedulable
on the remaining cores according to a multiprocessor schedul-
ing algorithm [7].
Federated Scheduling with Thread Pools. Next, we discuss
how to apply federated scheduling when using thread pools
and blocking synchronization. For simplicity, in the definition
of d(Φ, τ, t) in Section V we considered the number of cores
m. However, the approach can be generalized to federated
scheduling. We start by considering heavy tasks first. A thread
pool Φ handling a heavy task τi using blocking synchroniza-
tion can be configured as follows:

1) Compute the number of required cores hi with Eq. (11).
2) Compute the thread pool size |Φi| using Theorem 1

after redefining the desired concurrency (Definition 2)
to account for a subset of hi cores instead of all the
m cores available in the platform, i.e., d(Φi, τi, t) =
min(p(τi, t), hi).

3) Create a thread pool with |Φi| threads and configure
them to run exclusively on hi cores in an exclusive
manner. For example, in Linux, this can be done by using
sched_setaffinity system call.

Since light tasks are treated as sequential tasks, we can apply
the same procedure reported above, considering hi = 1, and
configuring the threads of the pool to run (non-exclusively, in
this case) on the remaining cores not used by heavy tasks.

B. Deadlock Avoidance

As shown in Section II-A, the concurrency reduction can
also lead to deadlocks in some cases. Clearly, guaranteeing the
absence of performance degradation, as proposed in this paper,
automatically guarantees also the absence of deadlocks. Prior
work [4] provided specific conditions to ensure the absence
of deadlocks at design time, which rely on determining nB .
However, [4] provided only a coarse upper-bound on nB .

Combining the conditions in [4] with the exact method for
determining nB proposed in Section VI is also beneficial to
better dimensioning thread pools of non-real-time or soft-real-
time systems using blocking synchronization to implement
fork-join parallelism.

C. Partitioned scheduling

Under partitioned scheduling, exactly one thread for each
task is statically assigned to a specific core, and also nodes
of a parallel task are statically assigned to run on a partic-
ular thread [4] (and hence core). Likewise, in this case, the
reduced concurrency phenomenon may cause both deadlocks
and performance degradation. We conjecture that a proper
thread pool design allows avoiding these issues even under
partitioned scheduling. However, this would require modifica-
tions to the thread pool implementation, which should allow
allocating multiple threads sharing the same work queue to
each processor. This research direction is left as future work.

IX. EVALUATION

This section reports on the results of two experimental
studies we performed to compare the proposed solution (which
is referred to as EXACT hereafter in this paper) with UB-1
and UB-2. The first experimental study targets synthetic work-
loads, designed to stress the reduced concurrency phenomenon
and to highlight the differences between EXACT, UB-1 [4],
and UB-2. The second experimental study compares the same
algorithms but on realistic deep neural network workloads.
In both of them, we aim at answering the question: how
much do we need to over provision our system, in terms
of threads, to avoid performance degradation due to limited
concurrency? To this end, we define (according to Eq. (4)) and
evaluate the overprovisioning factor OF(y) = (nB/y) · 100,
expressed in percentage, which specifies how much the thread
pool size needs to be oversized to always guarantee a total
concurrency equal to y, when nB is computed with each of
the three proposed methods. In the reported experiments, we
consider w.l.o.g. a platform with eight cores (i.e., y = 8).
Furthermore, we report the running times of the proposed
methods, executing them on a machine equipped with an
Intel Core i7-6700K @ 4.00GHz, and using the Microsoft
VC++2015 compiler. The ILP formulation has been solved
with IBM CPLEX.
Synthetic Workloads. In this experimental study, we synthet-
ically generated graphs compliant with the system model of
this paper in such a way to stress the reduced concurrency
phenomenon and the differences between the three methods
to bound nB . The generated graphs build upon the structure
of Figure 3, where each of the parallel branches containing
subgraphs SG2-SG4 and SG3-SG5 in the figure have been
substituted with xBL corresponding blocks connected in se-
quence. Two types of blocks have been considered: serial
blocks, composed of a single subgraph, and parallel blocks,
composed of four subgraphs. Subgraphs in each block are
connected as shown in Fig. 5. For example, Fig. 3 represents
a graph generated using serial blocks with xBL = 2. Fig. 6
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shows that UB-1 may lead to an oversizing factor above
1000% (inset (c)), thus giving rise to the need to create many
more additional threads with the negative effect of wasting
an excessive amount of resources (e.g., memory) due to the
pessimism in the estimation of nB . By comparing insets (a)
and (c), we observe that UB-2 gives much better results w.r.t.
UB-1 in the serial block setting, while it gives much more
pessimistic results w.r.t. EXACT in the case of parallel blocks,
reaching OF(y) values above 800%. As expected, EXACT
gives the best results, with a maximum OF(y) of 50%.
DNN Workloads. This second study aims at evaluating the
performance of the proposed methods with graphs based
on popular deep neural networks. In particular, we consid-
ered LeNet5 [24], AlexNet [25], GoogleNet [26], and In-
ceptionV3 [3]. Based on the DNN structures and the inter-
connections of their layers, we generated the corresponding
graphs by leveraging the considerations discussed in our deep
inspection of the TensorFlow code reported in Section II-B. In
particular, starting from the layer structure of each DNN, we
substituted a subgraph using blocking synchronization to each
layer that uses it (e.g., pooling or convolutional layers). The
four networks have been chosen as they have quite different
structures, thus allowing to test the proposed methods for
different scenarios: LeNet5 and AlexNet are indeed a fully-
serial sequence of layers, while GoogleNet and InceptionV3
have a much more parallel structure of layers. Fig. 7 show
that all the methods are able to tightly bound OF(y) in the
presence of a fully-sequential structure as those of LeNet5
and AlexNet5, while UB-1 and UB-2 again incur a notable
pessimism in the presence of more parallel structures, as also
observed for synthetic workloads. In particular, UB-1 and
UB-2 reach OF(y) above 140% and 130%, respectively, while
EXACT never exceeds 75%.

X. RELATED WORK

To the best of our knowledge, the problem of scheduling
a set of parallel real-time tasks scheduled by a pool of
threads did not receive much attention from the real-time
systems community. The two most closely related existing
results are due to Schmid and Mottok [20] and Casini et
al. [4]. However, [20] does not consider the usage of block-

1 2 3 4 5 6 7 8 9 10
0

100

200

300

xBL

O
F(

y
)

(a) OF(y), Serial

1 2 3 4 5 6 7 8 9 10

0

500

1,000

xBL

O
F(

y
)

(b) OF(y), Parallel

UB-1 UB-2 EXACT

Figure 6: OF(y) for synthetic workloads.

ing synchronization mechanisms (e.g., condition variables) to
implement fork-join parallelism and proposes a response-time
analysis to deal with the case where the number of worker
threads in a pool is less than the number of processors.
Conversely, [4] considers blocking synchronization, defines
the conditions to avoid deadlocks, and proposes response-
time analysis techniques to account for a reduced concurrency
(under both global [5] and partitioned scheduling [8]), showing
significant performance degradations with respect to the case
where the concurrency is not reduced (i.e., using the classical
sporadic DAG model [27]). In contrast, this paper focuses
on designing thread pools in such a way to fully avoid the
concurrency reduction phenomenon, thus allowing reusing
pre-existing results for the sporadic DAG model also when
using thread pools and blocking synchronization to implement
fork-join parallelism. Works from other scientific communities
considered the problem of finding an optimal thread pool
size, e.g., [28]–[30], but with the goal of avoiding waste of
resources (e.g., memory) while still promptly responding to
processing requests arriving dynamically, e.g., in the context
of cloud computing [31]. None of them considered real-time
constraints or the reduced concurrency phenomenon. Finally,
less closely related works studied the real-time performance of
specific frameworks, e.g., ROS 2 [1, 32]–[34] or OpenMP [35,
36].

XI. CONCLUSIONS

This paper proposed solutions to determine the optimal
thread pool size to avoid the performance degradation phe-
nomenon by modeling the problem both as a flow-cut problem
and as a maximum-weight independent set problem. With the
first modeling technique, we showed how to solve the problem
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as an integer linear programming formulation, with the advan-
tage of requiring no graph transformation and being suitable
for being easily extended to consider further constraints. This
comes at the expense of potentially significant running times
of ILPs for large DAGs. Instead, the second formulation
requires graph transformations, thus being potentially harder
to implement, but it guarantees a polynomial-time complexity.
We also discussed the results of a code inspection that has been
conducted to understand how parallel tasks implement fork-
join parallelism in Eigen. We highlighted the importance of
supporting, in terms of real-time analysis theory, programming
paradigms such as condition variables that are widely used
beyond Eigen’s use case, even for time-sensitive applications.
Finally, we discussed how the results of this paper could be
used under the federated and partitioned scheduling paradigms.

For future work, interesting directions comprise the study of
other methods to compute nBi , e.g., with techniques based on
the max-plus algebra [37], the design of dynamic methods to
create and kill threads at runtime when other threads block on a
condition variables to keep the available concurrency constant,
the consideration of threads blocking on other system calls on
the pool’s concurrency [19], and the study of how different
frameworks manage workloads run by a thread pool, e.g., the
multi-threaded executor of ROS 2.
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