Enhancing the Availability of Web Services in the
IoT-to-Edge-to-Cloud Compute Continuum:
A WordPress Case Study

Gabriele Serra
Scuola Superiore Sant’Anna
Pisa, Italy
gabriele.serra@santannapisa.it

Abstract—The IoT-to-Edge-to-Cloud compute continuum
presents vast opportunities for innovative applications, including
crowdsensing, which leverages interconnected devices to gather
real-time data. In domains like autonomous driving, crowdsens-
ing enables traffic information sharing through web services. In
this context, web services, like those based on Content Manage-
ment Systems (CMS), are often used by drivers and passengers
to share data about user experience, traffic congestion, and high-
definition maps. However, ensuring high availability becomes
crucial to maintain accessibility and reliability against usage
peaks. This paper proposes a modern WordPress deployment
approach that takes advantage of cloud-based to realize a cost-
effective horizontal scalable architecture, leveraging Amazon
AWS. The architecture suggested was implemented to test the
effectiveness and released as a set of architecture-ready-to-use
templates. Experimental results are provided to measure per-
request response times under different autoscaling policies and
bootstrap times.

I. INTRODUCTION

In the realm of the IoT-to-Edge-to-Cloud compute con-
tinuum, the convergence of technology has opened up new
possibilities for innovative applications. One such application
is crowdsensing, which harnesses the collective intelligence
of individuals and their interconnected devices to gather and
analyze real-time data. For example, crowdsensing plays a
crucial role in autonomous driving, allowing drivers and
passengers to share information about traffic conditions using
web services such as those commonly leveraging Content
Management Systems (CMS). Improving the availability of
IoT-to-Edge-to-Cloud applications is an open challenge that is
increasingly addressed using cloud computing. Indeed, in this
scenario, ensuring the high availability of web services be-
comes paramount as peaks in usage could potentially hamper
accessibility and reliability.

High availability of web services refers to the ability of a
system or application to remain operational and accessible,
even during periods of high demand or potential disruptions.
In the context of autonomous driving, where crowdsensing
enables the exchange of traffic information among drivers and
passengers, web services are essential for live data sharing
and informed decision-making. One of the leading examples

Pietro Fara
Scuola Superiore Sant’Anna
Pisa, Italy
pietro.fara@santannapisa.it

Daniel Casini
Scuola Superiore Sant’Anna
Pisa, Italy
daniel.casini @santannapisa.it

is represented by Waze!, a free mobile street navigation
application that heavily uses crowd-sourcing assistance from
community users and mobile data analysis [1]. Waze uses a
Content Management System (CMS) to collect user feedback
and suggest the shortest path to the destination.

Another example, still from the autonomous driving domain,
is updating High-Definition maps (HD maps). Indeed, modern
autonomous driving software stacks (such as, for example,
Apollo [2], [3]) use such maps for having advanced knowledge
about the roads, e.g., for having precise information about
where a traffic light should be located. As road conditions
change over time, these maps must be constantly updated,
mainly using crowdsensing [4], which relies on cloud services.
Again, here availability is important to ensure users always
have updated maps.

As a practical use case of the cloud-based chunks of a
massively distributed IoT-to-Edge-to-Cloud application, this
paper focuses on the availability of the popular WordPress
service.

WordPress is one of the first choices when dealing with
dynamic web content. WordPress is an open-source content
management system built over PHP and MySQL started in
2003. Its modular architecture allows developers to customize
it in remarkable ways. WordPress is the platform of choice
for over 39% of all sites across the web [5], also thanks to
its permissive GPL2 license. In 2003, when the first version
of WordPress was released, it was not built to sustain the
number of users that, nowadays, could potentially visit a
website simultaneously. Furthermore, it was not designed to
take advantage of all modern solutions, such as object caching
and database replication. Typically, WordPress is deployed
without relying on any modern, scalable cloud technology,
on a physical machine or, most of the time, on a virtual
machine in a shared server. However, it is worth noting that
the proposed approach is not limited to WordPress and can be
applied to any general large web application.

Contribution. This paper proposes a modern WordPress de-
ployment that uses cloud-based instruments to address the

Thttps://www.waze.com

mentioned issues. In particular, the paper aims to help web-
hosting services or cloud-migration companies to build a
robust, high-available network of WordPress instances. To
this end, we developed an architecture that uses Amazon
AWS services. The approach developed in this paper could
be implemented using different cloud provider services such
as Microsoft Azure or open-source Open Stack. We also pro-
vided an architecture implementation and realized it through
architecture templates. Efficiently exploiting cloud services
and infrastructure requires technical expertise and a deep un-
derstanding of the cloud provider-offered services. Therefore,
we strongly believe a set of documented predefined templates
can represent a starting point for companies or developers with
limited prior experience to understand how effectively deploy
a large web application, drastically improving the availability
of any IoT-to-Edge-to-Cloud applications.

II. RELATED WORK

The basic principles in scaling up a WordPress instance are
the same for scaling up any sizeable web application. Due
to the number of active WordPress instances, the community
often debates how effectively to scale up a WordPress-based
web application horizontally. Many companies offer Word-
Press horizontal scaling plans [6], [7], [8]. Further, research
papers and tech reports provide solutions for augmenting
WordPress horizontal scalability, typically achieved by adding
more machines to the allocated pool of resources. [9] repre-
sents a noteworthy solution, which reports some takeaways
concerning developing a network of approximately half a
million blogs. However, the solutions mentioned do not offer
a detailed architecture design or documentation. Instead, they
offer mainly a list of tips or, in other cases, expensive hosting
plans.

The most scalable solution of WordPress multisite instance
is represented by WordPress.com. They decided to publish
the plugin used in their production version of the architec-
ture, HyperDB. HyperDB abstracts access to geo-distributed
databases®>. However, they did not release any further docu-
mentation regarding the architecture.

To the best of our knowledge, the most detailed and compre-
hensive work was published by Amazon [10]. Our proposed
architecture is based on the mentioned work and extends it.
The differences between our proposed architecture and the one
proposed by Amazon consist mainly of

« replacing the synchronized file system with a stateless
block file system,
« making use of state-of-the-art packages,
o providing benchmarks showing web server response
times under heavy-loaded situations,
o providing a build-and-validation template mechanism;
The proposed approach can work well in a heavy-load
scenario for all the reasons mentioned in the introduction.
Simultaneously, a single WordPress instance can be reasonably
scaled vertically, i.e., by adding more computational power to

2The plugin is available at https://wordpress.org/plugins/hyperdb/

the existing machine, arguably representing a less expensive
choice.

The architecture provided by Amazon suffers a high-
performance penalty when serving highly-dynamic pages. In
Amazon’s proposed approach, each compute instance shares
a network synchronized file system (EFS) mounted as NFS.
Network file systems are charged for each byte of data
retrieved; thus, there are more cost-effective solutions than
this. Further, EFS is subject to throttled burst with a limit
depending on the file-system size. Their proposed approach
injected fake data to increment the file system’s size and get
a greater burst limit, paying a higher cost.

Conversely, our benchmark showed that a batch of I/O
operations (such as reading, writing, and listing metadata) in
EFS could experience a latency that is 10x higher than on a
block file system. Previous works, such as [11], confirm our
measures and discuss how to tune the environment to get the
best performance which is, unfortunately, not comparable to
work with a local block file system. To confirm our conclusion,
in [12], the author analyzes the burst throughput limit in-
depth, highlighting that it is not even an option to serve a
PHP application with thousands of files using a network file
system.

Several contributions have also been presented in the aca-
demic research domain. For example, a probabilistic approach
has been proposed for reducing physical computational re-
sources requirements in an elastic cloud computing environ-
ment [13]: basically, an admission control decides if a new
service can be admitted in a system reducing the risk of
failure of already deployed ones. Bowers et al. [14] presented
HAIL: high availability and integrity layer to guarantee the
integrity and high availability in cloud storage. Another high-
availability architecture for IoT-to-cloud services has been
proposed in [15]. Kanso et al. [16] presented an approach
for enforcing high availability acting at the application level.
Casini et al. [17] considered the local load balancing of real-
time applications running on multicore embedded systems
without targeting a distributed system.

Overall, the proposed architecture differentiates from the
others because it presents an open ready-made approach,
considers deploying a WordPress instance, and overpasses
performance limits using a local block file system.

III. ARCHITECTURE

Typically, highly available web applications are organized
using the three-tier architecture. The three-tier architecture is a
software architecture that forces an application’s organization
into three logical tiers: the presentation tier, or user interface;
the application tier, where data is processed; and the data tier,
where the data associated with the application is stored.

The three-tier architecture and its instantiation in the context
of this work are shown in fig. 1.

The main benefit of adopting this architecture is that each
tier can be updated or scaled as needed without impacting the
other tiers. Today, most three-tier applications are targets for

Presentation Tier :> m @
(user interface) Web Server
¥) with Wordpress GUI
(N
Application Tier @
(data processing) WordPress core files
and plugins
\ 4
4 N
Data Tier R
(data storage)
MySQL Database
. Y

Fig. 1. Three-tier cloud architecture and its instantiation in the context of the
WordPress Case Study.

modernization, using cloud-native technologies such as con-
tainers and microservices, and for migration to the cloud [18].
In our WordPress environment, the tiers are, respectively:

o the web server that provides the user interface (both end-
users and administrator interfaces) and static assets;
« the application logic composed of WordPress core files
and plugins;
« the database server hosting end-user sessions and data.
To let the WordPress instance scale both horizontally and
vertically, all the tiers must be designed to support scalability.
In the following subsections, we analyze deeper how to
organize the architecture accurately for all tiers.

A. Make the web-tier scalable

1) Compute machines: All major cloud providers do not
offer ready-made web hosting. Instead, they offer re-sizable
virtual machines. Typically, developers can customize virtual-
machine instances to fit their needs regarding performance and
cost.

When deploying a computing instance, the system adminis-
trator must specify the region where the instance will run and
the respective availability zones (AZs), i.e., logical data centers
located within a region available for use by any customer. Each
region is designed to be isolated from the other regions hence
resources across different regions are not replicated. However,
it is possible to distribute instances across multiple AZs so
that if an instance fails, another one in the same region but in
a different AZ can handle requests. The Figure 2 shows how
multiple AZs are organized in a region.

2) Resources auto-scaling: As pointed out in the introduc-
tion section, WordPress instances that do not use modern cloud
services must be redesigned, taking into account the traffic
peak. Elasticity is one of the most exciting characteristics of
cloud services. Indeed, the cloud provider could provide more
computing capacity to the application, instancing more VMs,
and making the application scale horizontally. The provision-
ing could be automatized according to traffic conditions with-

dWs

Amazon Web Services
AWS

/ Region \ / Region \
Availability Availability Availability Availability
zone zone zone zone
Availability Availability
zone zone

o AN /

Fig. 2. Multiple Availability Zones (AZ) in a region.

out the need for manual intervention. Our architecture config-
ures the computing machines’ number adding one unit during
traffic spikes to maintain performance requirements. When the
traffic decreases, the auto-scaling functionality automatically
resizes the group to reduce costs. Indeed, cloud providers
charge customers per hour of computing machine usage. As
demonstrated in Section V, the number of available computing
units can follow target performance. Auto-scaling ensures that
only the necessary computing units are instantiated in a given
time window. This means that you can avoid over-provisioning
your resources, which can lead to unnecessary costs.

3) Load-balancer: Our architecture supports dynamic addi-
tion and removal of compute instances. Furthermore, instances
are deployed over different AZs in a given region. Instances
are always available; therefore, we included a load-balancing
solution to distribute end-user requests. The load balancer
could be configured to distribute requests across different
EC2 instances. AWS offers different kinds of load balancers;
however, the suggested one to implement HTTP/HTTPS bal-
ancing is called Application Load Balancer. The application
load balancer can be customized to balance application load
using HTTP packet headers. Furthermore, it can also be
configured to perform application health checks and machine
health checks. In our implementation (refer to Section IV),
we configured a health check on the /wp—admin dashboard.
The load-balancer requests the admin dashboard every interval
of seconds, and then, if it does not receive a reply from an
instance, it stops sending requests to the instance and signaling
it as faulty. You can customize health checks to your specific
use case.

B. Make the application-tier scalable

Our architecture uses multiple web servers in automatic
scaling configuration to maximize availability and minimize
costs. However, to let the application instance scale on dif-
ferent machines means the application must be stateless. A

stateless application does not need knowledge of previous
interactions and does not need to store data.

In the context of web applications, an application is said
to be stateless when all end-users receive the same response
when making the same request, regardless of which web server
(when more than one) processed their request. Consequently,
A stateless application can scale horizontally since any web
server can service any request.

Further, each web server instance does not need to be aware
of others’ presence, and the only requirement is to distribute
the workload across different peers.

By its nature, WordPress is partially stateless; it relies
on cookies stored in the client’s web browser and mainly
stores data (such as posts and user info) in the database.
However, WordPress was initially designed to run on a single
server. As a result, it stores some data on the server’s lo-
cal file system. When running WordPress in a multi-server
configuration, saving data on the server’s local file system
creates inconsistencies across web servers. For example, if
a user uploads a new image, it is only stored on one of the
servers. This demonstrates why the default WordPress running
configuration needs to be augmented to allow moving data out
of the application tier, thus preserving a stateless behavior.

In our approach, we decided to make the WordPress core
completely stateless. We distinguish the files that need to be
moved out of the WordPress application tier as log files and
media. Media files are static assets, so we made them available
through a file bucket. Regarding logs, we created a shared
file system, synchronized it among all compute instances, and
mounted it at boot time.

C. Make the data-tier scalable

When using WordPress, the database is one of the most
critical components that affect performance. Therefore, as
pointed out in previous sections, it is the only stateful com-
ponent. Then the database cannot be hosted directly with
web servers on computation instances, but it must be hosted
on a reliable, always-available node. However, tuning up a
replicated database with all the implications can be chal-
lenging. Consequently, we decided to opt in for a managed
database. A managed database is a cloud computing service
handled directly by the cloud computing company. Unlike
self-deployment databases, developers do not need to set up
nor maintain the service; instead, it is up to the provider to
oversee the database’s infrastructure. A managed MySQL-
compatible database is transparent to the application that
can interact using SQL without worrying about consistency
and replication. Managed databases also automatically handle
failovers. Furthermore, to reduce the workload on the database,
we decided to cache frequent queries.

1) Database caching: Database caching is a common prac-
tice when applications are read-heavy such as WordPress.
The results of selection queries are stored in a low-latency
memory (typically in a key-value structure). A variety of object
caching systems is available nowadays. One of the most used
is Memcached, an in-memory key-value store for small chunks

of data. As the database scales, the cache must consequently
scale up; thus, a suitable option is taking advantage of a
managed cache service.

IV. IMPLEMENTATION

Next, we discuss how the proposed architecture has been
implemented. First, we present the AWS services used. Sec-
ond, we discuss the WordPress network management details
of the proposed solution. Finally, we discuss the deployment
of the solution.

A. Involved AWS services

The architecture described in Section III was implemented,
making use of Amazon AWS services. We decided to instan-
tiate all needed resources in an Amazon Virtual Private Cloud
environment (VPC). A VPC is a logically isolated virtual
network where the solution architect has complete control over
the networking environment. A VPC can also be subdivided
into subnets reachable employing route tables and network
gateways.

Then, our reference implementation spawns all resources
in a newly created VPC, deployed in the eu-west-1 region,
physically located in Dublin, Ireland. The region mentioned
above is the region with the lowest price; therefore, it is a
common choice when dealing with an application that serves
the European market. The VPC works across two (out of
three) availability zones (AZs) to maximize availability and
fault tolerance.

A content-delivery network node represents the edge of
the network, realized using AWS CloudFront. The goal of
Cloudfront is to distribute our service in a geographic location
nearer to the end-users. In our particular scenario, the most
requested static assets will be cached and served from the
AWS Datacenter in Milan. Using a CDN, we can deploy
our application in a specific geographic location (such as eu-
west-1) without worrying about the latency experienced by
end-users. AWS Cloudfront is configured with two different
origins, an Application Load Balancer and an S3 bucket to
serve images.

The Cloudfront endpoint is linked with the primary domain
name. Each site of the network has a third-level domain or
can be mapped to a second-level domain. The entire DNS
management is done using AWS Route 53, a highly available
and scalable cloud Domain Name System (DNS) web service.

As pointed out in Section III, all media, such as photos and
videos, are not directly served by the web server. Indeed, these
static assets are placed into an S3 bucket that is shared among
all webserver instances. Amazon S3 (in which S3 stands for
Simple Storage Service) is a low-cost object storage service
that serves static assets. Using Amazon S3, our web servers
do not need to serve all static files; thus, they can generate
dynamic content for end-users.

Instead, the Application Load balancer tries to distribute all
requests from end-users to computing instances hosting our
web servers. The load-balancer distributes requests balancing
the load on each instance, and performs an instance health

E AWS Cloud 13 Region: eu-west-1

% - .
Route 53 E :

S3
Bucket

Users

f @ e

NAT P

Gateway
Cloudfront
(edge located)

b
o

NAT P

o Public subnet

@ -— @_ ——> ilz ALB Auto Scaling

Availability Zone: eu-west-1b

Public subnet

Auto Scaling group

. Private subnet

E&. L P
A

Cc2 Memcached
Elastic Storage

Aurora DB

. Private subnet

2 a8

EC2 Memcached

Fig. 3. Implementation of the proposed architecture using AWS services.

check. If an instance does not reply for any reason, the load
balancer can replace the instance by performing a hot swap.
Further, the load balancer can spawn additional computing
instances.

Computing instances are implemented using Amazon Elas-
tic Compute Cloud (EC2) instances. EC2 instances are cus-
tomizable virtual machines that provide computing resources
at a fixed hourly cost. Webservers, then, are deployed over an
EC2. Each EC2 uses a private block file system, thus executing
the stateless WordPress core.

Posts, user credentials, and products, all users’ session
information, are saved onto an AWS Aurora database. Amazon
Aurora is a MySQL-compatible relational database built for
the cloud. Amazon Aurora features a distributed, fault-tolerant
storage system that auto-scales up to 128TB per database
instance. It delivers high performance and availability with
up to 15 low-latency read replicas and replication across three
Availability Zones (AZs). One of the most excellent features
is that the replication is transparent to the application, which
works out of the box without installing additional plugins or
components. We chose a Master-Slave configuration. Also, we
decided to cache the most recent queries using an AWS Elastic
Cache instance. The support is provided by AWS and compiled
by us for PHP 7.4. The plugin W3 Total Cache is used to make
everything work smoothly.

Our reference architecture was implemented using Amazon
AWS Cloudformation templates. While most users use the
AWS Web interface for their everyday monitoring activity, it
is difficult to version and track architecture changes without
a versioning tool. Therefore, AWS CloudFormation allows
you to model your architecture using json or yaml templates,
treating your infrastructure as code. Cloudformation templates

describe the resource and their dependencies, so it is possible
to create, update, provision, and delete the entire stack of
resources instead of manually managing each of them.

B. Wordpress network management details

A super-admin user (network manager) can create new
sites and manage the network entirely. The network manager
decides if end-users can create new sites.

All sites share templates and plugins. From the “network
panel”, the Super Admin can enable/disable plugins and tem-
plates; this is a smart way to install/update/enable a plugin in
all the networks.

The database is unique for the entire network and contains
two kinds of tables: shared and private. Shared tables have
information common among all sites of the network, such as
users of the network. Private tables, instead, contain informa-
tion referring to a single site. Each private table has a unique
prefix that makes use of the blog-id number.

The system administrator can use the WP CLI. To specify
the target site, you need the site URL, i.e.

wp command —-url=sub.example.com [opt]

We decided to make the block file system not writable by the
WordPress instance. In this way, when a plugin tries to write
the file system, an error will pop up, enhancing the system’s
security degree.

C. Deployment

The repository provided contains a set of nested templates
which are run in order from the master template. Running the
master template, you can deploy the entire stack. Furthermore,

Master template
Resources:
oo
web:
Condition: AvailableAWSRegion
DependsOn: [
efsfilesysten,
vpc,
publicalb,
securitygroups,
cloudfront]
Type: AWS::CloudFormation::Stack
Properties:
Parameters:
DatabaseClusterEndpointAddress:
!GetAtt [
rds,
Outputs.DatabaseClusterEndpointAddress]
#o...
WebAsgMax:
'Ref WebAsgMax
WebAsgMin:
'Ref WebAsgMin
WebInstanceType:
'Ref WebInstanceType
WebSecurityGroup:
!GetAtt [
securitygroups,
Outputs.WebSecurityGroup |
o,
TemplateURL: 04-web.yaml
#o..
cloudfront:

Condition: DeployCloudFront
DependsOn: [publicalb]
Type: AWS::CloudFormation::Stack
Properties:

Parameters:

CloudFrontAcmCertificate:
'Ref CloudFrontAcmCertificate
PublicAlbDnsName:
!GetAtt [
publicalb,
Outputs.PublicAlbDnsName]
WPDomainName:
'Ref WPDomainName
TemplateURL: 0O4-cloudfront.yaml

Fig. 4. Example of template code.

you can run templates individually (to debug, for instance),
providing the required parameters at each step.

The master template, shown in fig. 4, can be launched
by taking advantage of AWS CLI, using the aws
cloudformation create-stack command, and pass-
ing the master template.

V. EXPERIMENTAL EVALUATION

This section presents our experimental evaluation campaign
to validate the implemented approach. The experimental cam-
paign targets the web application’s response time and the
bootstrap time of each architecture component.

A. Response time

The steady-state phase of the campaign evaluates the sys-
tem’s resiliency and capacity to sustain an increasing number

of requests.

Our experimental evaluation was carried out by increasing
the number of concurrent requests, performing a GET request,
and tracking the response time of the webserver in generating
the content.

The application load balancer was configured to equally
distribute the load over available targets. The auto-scaling
groups were configured to scale the capacity as traffic changes
occur dynamically.

We considered two different dynamic autoscaling policies:

e Target tracking scaling: increase/decrease the
current capacity based on a specific monitored metric;

e Step scaling: increase/decrease the current capacity
based on step adjustments, configured using monitoring
alarms.

Next, we briefly discuss the main characteristics of the two

policies.

Target tracking scaling. The target tracking scaling specifies
a target value for a specific metric and aims at maintaining
the target value by minimizing the error. The autoscaling
policy can be configured with different metrics [19], such
as the average CPU utilization, the average number of bytes
received/transmitted by a single instance on all network in-
stances, and the average application load balancer request
count per target. In this experiment, we consider both the
average CPU utilization of 50% and an average request count
target of 1000 requests as metrics. Indeed, for example,
meeting an average CPU utilization of 50% can make the
system robust to handle traffic spikes without maintaining
excessive idle resources. The dynamic autoscaling policy then
scales the number of instances to keep the CPU utilization
value around 50%.

Step scaling. The step scaling policy considers the same
metrics as the target tracking scaling. However, it takes a
different input: an upper and a lower bound relative to the
breach threshold, i.e., the threshold that triggers an autoscaling
action when overcome. Most commonly, the autoscaling action
consists in adding or removing one virtual machine, but also
more complex policies exist [20]. In AWS, this is achieved
by means of CloudWatch alarms [21]. Also, we considered
the average CPU utilization as a metric in this configuration.
The step scaler is set configured with two thresholds: 45% and
55%. The autoscaling action consists of adding or removing
one virtual machine when the threshold is surpassed. The same
action is taken when the scaling policy is configured to meet
an average request count of 1000.

Experiment. This experiment consists in performing concur-
rent requests to the web server by numerous clients. The
number of concurrent requests ranges N ranges from 1 to
10000. The application load balancer was configured with the
mentioned scaling policies.

The same metric was selected for each scaling policy, and
we performed two sets of experiments using the average CPU
utilization and the number of requests per target as a metric.

The computing instance hosting the web server is a
t2.micro computing instance. The minimum number of

CPU Utilization 50% - Average response time
2

Response time (s)

| | | |
0 0.2 04 06 08 1
Concurrent requests number104

Request per target 1K - Average response time
2

Response time (s)

| | | |
0 0.2 0.4 0.6 0.8 1
Concurrent requests numberl 04

L

CPU Utilization 50% - Average actual utilization

=
jan)
e}

K | | | |
0 0.2 0.4 0.6 0.8 1
Concurrent requests number104

Average CPU utilization (%)
at
)

§Request per target 1K - Average actual utilization

‘ | | | |
0 0.2 0.4 0.6 0.8 1
Concurrent requests number104

Average CPU utilization

—x— Target-tracking scaling —— Step scaling

Fig. 5. Response times and average CPU utilization when considering a CPU utilization of 50% as a metric for the dynamic autoscaling (first row) and 1000

request for target (second row).

computing instances was set to 1, and the maximum number
to 10.

Results (Figure 5) show that the application load balancer,
in both cases, can honor the requirements.

Both scaling policies exhibit similar behavior in the first
set of experiments (the first row of Figure 5). The average
CPU utilization remains constant and near 50%. When the
number of requests grows above 6000, the load balancer stops
launching computing instances due to the maximum constraint
specified.

In the second set of experiments (second row of Figure 5),
scaling policies exhibit still a similar behavior but, due to the
intrinsic difference in the control policy, they reach different
results. Due to the presence of the threshold, the actuation
of the scaling happens with a delay with respect to target
tracking scaling, bringing the system to an overloaded status
(the average capacity reaches 100%) and therefore bringing it
to an unresponsive web server.

B. Bootstrap time

In this experiment, we measured the time needed to set up
the entire architecture since the deployment of templates, i.e.,
the so-called boostrap time. Since templates were developed,
setting up the entire network stack requires only deploying
them using the AWS CloudFormation service.

Bootstrap time is important for maintenance, as it provides
important information about how long maintenance windows
must be. Further, the bootstrap time of the computing nodes

gives fundamental hints about computing instance warm-up
and cooling-down times.

Warm-up and cooling-down times are used as delays in
actuating control actions to reach a scaling convergence. Until
its specified warm-up time has expired, an instance is not
counted toward the aggregated instance metrics of the auto-
scaling group. If the group scales out again, the instances that
are still warming up are counted as part of the desired capacity
for the next scale-out activity. The intention is to continuously
(but not excessively) scale out.

Table I shows the time (seconds) needed for each template
from the deployment to the actual availability of resources.

VI. CONCLUSIONS & FUTURE WORK

This paper considered the problem of improving the avail-
ability of IoT-to-Edge-to-Cloud applications, mainly focusing
on cloud aspects. In particular, it proposed a modern cloud
deployment approach, leveraging WordPress as a relevant
example. However, the proposed approach is wider than Word-
Press and could be applied to any other large web application
to build a robust, high-available, and cost-effective system.

The architecture proposed was implemented to test its
effectiveness and released as a set of architecture-ready-to-
use templates which represent a starting point for companies
or developers with limited prior experience to understand how
to effectively deploy and maintain a large web application in
a cloud environment. Evaluation results show that selecting

Step number | Template name | Boot time | Description

1 vpc 128 s Create the virtual private cloud environment

2 sgs 27 s Setup network security groups and firewall rules

3 cache 251's Launch elastic-cache computing nodes

3 alb 728 Setup load balancer with specified rules

3 bastion 150 s Launch SSH accessible node for maintenance

3 rds 589 s Instantiate redundant managed DB nodes

3 efs 106 s Instantiate a network block file-system

4 cloudfront 80 s Setup AWS CDN rules

4 web 281 s Launch computing nodes and setup the application

5 route53 39 s Setup DNS rules

6 dashboard 8s Create a monitoring dashboard for maintenance
TABLE I

BOOTSTRAP TIME (S) REQUIRED FOR EACH TEMPLATE.

an appropriate scaling policy/metric is fundamental to keep-
ing the system responsive and resilient to unexpected traffic
peaks, especially when dealing with a system in which high
availability is crucial.

In the future, we plan to enrich templates with a ready-
made staging environment to test updates and changes in a
non-production environment before proceeding to the actual
release. Furthermore, we are actively working on measuring
the real cost-effectiveness with respect to deploying separate
instances.

Concerning more general work about availability in the IoT-
Edge-Cloud, there is plenty of space for future research. First,
future research will explore the availability of the IoT/Edge.
One relevant challenge to be tackled consists in always guar-
anteeing a reliable network connection to devices. This could
be possibly achieved by redundancy, e.g., by configuring IoT
devices with multiple alternatives for connectivity.

Monitoring is another key means to achieve availability:
IoT, edge, and cloud devices must be constantly monitored to
promptly react to anomalies such as faults or security attacks.

Most important, research on security in virtualized envi-
ronments [22], [23], [24] is a key direction to guarantee
availability. This is because, for example, attackers can harm
the availability of a web service by flooding it with millions
of requests, thus triggering a Distributed Denial-of-Service
(DDoS) attack. This allows, for example, preventing malicious
users from flooding the web service with millions of requests,
thus harming its availability or severely compromising per-
formance, thus inevitably impeding to meet Service Level
Agreement (SLA) guarantees.

ACKNOWLEDGMENT

This work has been partially supported by the Euro-
pean Union’s Horizon Europe Framework Programme project
NANCY under the grant agreement No. 101096456.

ONLINE MATERIAL

The documentation, templates, and scripts repository can be
found at:
https://gitlab.retis.santannapisa.it/ga.serra/wpaas-architecture

REFERENCES

[1] M. Amin-Naseri, P. Chakraborty, A. Sharma, S. B. Gilbert, and M. Hong,
“Evaluating the reliability, coverage, and added value of crowdsourced
traffic incident reports from waze,” Transportation Research Record,
vol. 2672, no. 43, pp. 34-43, 2018.

[2] Baidu, “Apollo autonomous driving framework.”

[3] L. Belluardo, A. Stevanato, D. Casini, G. Cicero, A. Biondi, and
G. Buttazzo, “A multi-domain software architecture for safe and secure
autonomous driving,” in 2021 IEEE 27th International Conference
on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp. 73-82, 2021.

P. Zhang, M. Zhang, and J. Liu, “Real-time hd map change detection
for crowdsourcing update based on mid-to-high-end sensors,” Sensors,
vol. 21, no. 7, 2021.

M. Little and M. Mullenweg, “Democratize publishing: The freedom
to build. the freedom to change. the freedom to share.” tech. rep.,
Wordpress.org, 2003.

Convesio, “Scalable, high-speed infrastructure for wordpress.”

S. WP, “Can wordpress scale?.”

BigCommerce, “Is your wordpress website scalable enough for more
traffic?.”

J. Farmer, “How to scale wordpress to half a million blogs and 8,000,000
page views a month,” tech. rep., wpmudev, 2013.

P. Lewis, R. Guilfoyle, A. Chatzakis, and J. Touzi, “Best practices for
wordpress on aws,” tech. rep., AWS, 2019.

L. McDaniel, “Performance tuning aws efs for wordpress.”

J. Geerling, “Getting the best performance out of amazon efs.”

K. Konstanteli, T. Varvarigou, and T. Cucinotta, “Probabilistic admis-
sion control for elastic cloud computing,” in 2011 IEEE International
Conference on Service-Oriented Computing and Applications (SOCA),
pp. 1-4, 2011.

K. D. Bowers, A. Juels, and A. Oprea, “Hail: A high-availability and
integrity layer for cloud storage,” in Proceedings of the 16th ACM
conference on Computer and communications security, 2009.

H. Yang and Y. Kim, “Design and implementation of high-availability
architecture for iot-cloud services,” Sensors, vol. 19, 2019.

A. Kanso and Y. Lemieux, “Achieving high availability at the application
level in the cloud,” in 2013 IEEE Sixth International Conference on
Cloud Computing, pp. 778-785, IEEE, 2013.

D. Casini, A. Biondi, and G. Buttazzo, “Task splitting and load bal-
ancing of dynamic real-time workloads for semi-partitioned edf,” IEEE
Transactions on Computers, vol. 70, no. 12, pp. 2168-2181, 2021.
IBM, “Three-tier architecture.”

A. AWS, “Target tracking scaling policies for EC2 Auto Scaling.”

A. AWS, “Configure instance weighting for Amazon EC2 Auto Scaling.”
A. AWS, “AWS cloudwatch alarms.”

O. Osanaiye, K.-K. R. Choo, and M. Dlodlo, “Distributed denial of
service (ddos) resilience in cloud: Review and conceptual cloud ddos
mitigation framework,” Journal of Network and Computer Applications,
vol. 67, pp. 147-165, 2016.

N. Borgioli, M. Zini, D. Casini, G. Cicero, A. Biondi, and G. Buttazzo,
“An i/o virtualization framework with i/o-related memory contention
control for real-time systems,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 41, no. 11, 2022.

A. B. de Neira, B. Kantarci, and M. Nogueira, ‘“Distributed denial of
service attack prediction: Challenges, open issues and opportunities,”
Computer Networks, vol. 222, p. 109553, 2023.

[4]

[5]

[6]
[7]
[8]
[9]
[10]
[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]
[22]

[23]

[24]

