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Abstract—With the advent of massively distributed appli-
cations such as those required by the IoT-to-Edge-to-Cloud
compute continuum (i.e., automotive, smart agriculture, smart
manufacturing, and more), real-time communication mechanisms
allowing physically distributed nodes to seamlessly communicate
as if they were running on the same host acquired noteworthy
importance. To this end, the synchronous inter-process communi-
cation (IPC) mechanism provided by the QNX operating system
(OS) is a promising candidate, as it allows using the application
programming interface for communicating both on a single- and
multi-node setting. Furthermore, it provides priority and partition
inheritance mechanisms to improve predictability when working
with the Adaptive Partitioning Scheduler (APS), a reservation-
based scheduler provided by the QNX OS. This paper explores
the behavior of the QNX synchronous message-passing (SyncMP)
IPC with an extensive set of experiments, using them to formalize
its behavior and model it from a real-time perspective. Then, it
provides a response-time analysis for client-server applications
based on the QNX SyncMP building upon self-suspending task
theory. Finally, we evaluate the analysis on an application based
on the WATERS 2019 Challenge by Bosch.

I. INTRODUCTION

Modern applications across several domains are predom-
inantly distributed and consist of a set of communicating
components located on different nodes, possibly spanning the
IoT, to the edge, up to the cloud. A case in point is autonomous
driving [1]–[4], that requires intensive computations, which
may be offloaded to surrounding edge nodes or the cloud, and
could also interact with the surrounding IoT infrastructure. In
essence, functionalities are often realized by elements that are
executed on the local node, e.g., an electronic control unit
(ECU) of a car, and others that are offloaded elsewhere, either
another ECU or to the edge/cloud in a client-server fashion.
This gives rise to the need for a compute continuum, where
nodes can seamlessly interact in a distributed environment as
if executing on the same node.

To this end, the QNX operating system provides a set of
synchronous message-passing primitives (SyncMP) for inter-
process communication (IPC) devised to be used to implement
such a client-server paradigm [5]. Unlike most of the other
IPC mechanisms, the QNX IPC allows for the seamless
integration of components distributed onto multiple nodes by
transparently using the same application programming inter-
face (API), via the QNX Transparent Distributed Processing
(QNET) component. QNET enables logically merging a set of
distributed QNX devices into a single logical computer where

all applications can communicate through a unified program-
ming interface. Furthermore, QNX is ISO-26262 certified at
the highest level of assurance (ASIL-D), making it widely
preferred by many automotive OEMs [6].

Another key aspect for most of these applications is the
need to satisfy real-time requirements. From this side, QNX
is a promising candidate. Indeed, the QNX OS provides the
Adaptive Partitioning Scheduler (APS) [7], which implements
fixed-priority scheduling and a reservation-based mechanism
where threads are grouped into “partitions”, i.e., virtual con-
tainers with a guaranteed fraction of processing bandwidth.
The assigned bandwidth is ensured to be delivered irrespective
of what is executed in other partitions, and it allows for
providing temporal isolation among partitions. This is very de-
sirable in the target distributed setup, where modules running
in different partitions can have different levels of criticality.

Furthermore, QNX provides priority and partition inheri-
tance mechanisms to improve the predictability of its SyncMP
when used with APS. So when a server thread is executing
a service on behalf of a client, it can inherit the priority
and the partition bandwidth associated with the client. This
prevents the priority-inversion phenomenon that would arise if
the server executed with a lower priority than the requesting
thread and allows for designing servers’ partitions more easily.

However, QNX is closed-source, and how APS and the
SyncMP mechanism interact is not extensively documented.
Furthermore, only a few works studied QNX from a real-
time perspective [6, 8] and to our knowledge, none of them
explore the local IPC mechanisms or the aforementioned
transparent distributed processing from a timing perspective.
This makes it hard to provide a suitable model of the system
to allow deriving timing bounds for distributed applications
using QNX.
Contributions. To fill this gap, this work explores the behavior
of the QNX SyncMP mechanism when working in conjunction
with APS. To this end, we perform extensive experiments
to characterize its behavior from a real-time perspective, and
derive a suitable model for analyzing QNX-based client-server
applications. Furthermore, we describe the QNX SyncMP and
its interactions with APS with a set of rules. The model and the
rules are then used for deriving a response-time analysis based
on self-suspending task theory [9], which sets the foundation
for deriving design methodologies and analysis-driven orches-
tration mechanisms for distributed applications running QNX



in future work. Finally, we report the results of an extensive
evaluation we performed to: (a) evaluate the communication
latency when using SyncMP; (b) compare the proposed WCRT
bounds with measurements on the platform; and (c) evaluate
the analysis on a realistic autonomous driving application
based on the WATERS 2019 Challenge by Bosch [10].

II. QNX OS OVERVIEW

This section introduces the main features of the QNX OS
that are considered in this work.
The Adaptive Partitioned Scheduler (APS). The APS is a
reservation-based scheduler that groups threads into virtual
containers called partitions. By budgeting the execution of
each partition, QNX APS allows providing each partition with
a fraction of the processing capacity. For each partition, its
budget determines the amount of processing time in a sliding
window, common to all partitions, set to 100 ms by default.
When the budget reaches 0, the partition is throttled, and its
budget is gradually restored when enough time has passed. The
QNX scheduler combines APS with a fixed-priority scheduler,
meaning that, at any point in time, the highest-priority thread
with a positive budget is selected to run. There are 255
priority levels, with 255 being the highest priority. Partitions
are created by subtracting budget from the system partition, a
parent partition that initially has 100% of the budget. APS
also provides the so-called idle-time mode to improve the
performance in the average case through budget reclamation.
Threads can be assigned to specific cores using core affinities.
Inter-process communication in QNX. QNX offers different
IPC mechanisms like synchronous message passing (SyncMP),
signals, FIFOs, pipes, message queues, and shared memory
communication. Among these, SyncMP and signals are im-
plemented in the microkernel, while the others are offered
as external services. In this work, we focus on synchronous
message passing that forms the foundational IPC message
mechanism provided by the QNX OS. This is based on the
three key primitives, MsgSend(), MsgReceive(), and
MsgReply(), which form the basis to realize the client-
server paradigm [5]. Fig. 1 shows the kernel state transitions
involved when a client and server interact using the SyncMP
primitives mentioned earlier. The client (sender) thread invokes
a blocking MsgSend() until it receives a MsgReply() from
the server (receiver) thread. The server, on the other hand,
listens to incoming messages with a MsgReceive(), pro-
cesses them, and replies with a corresponding MsgReply().
As opposed to MsgSend(), MsgReply() is non-blocking,
implying that a server thread could reply to a client and
continue with its normal processing while the underlying
networking stack (kernel) could asynchronously transfer the
reply data to the client thread.
QNX Channels. With channels, QNX offers an abstraction
over the regular message passing to be used for client-server
communication with the discussed SyncMP primitives. The
channel facilitates many-to-one communication, and therefore,
multiple threads could connect to a given channel. Every
channel records the threads waiting for messages, un-replied
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Figure 1: Kernel states and transitions the client (a) and server
(b) transition during message passing. Other state transitions
are indicated in dashed lines.

messages, and received but not yet replied messages for
bookkeeping. When multiple messages are waiting on the
same channel, they are consumed in priority order by a server
calling MsgReceive(), according to the priority of the
client that sent it.
QNX Transparent Distributed Processing (QNET). QNET
is the native network manager of QNX. It provides the system
developer with a uniform interface to access resources from
either local and remote nodes, giving the appearance of a
single logical computer to the developer while abstracting the
underlying pool of interconnected QNX-based devices. In this
work, we explore the behavior of the QNX SyncMP also in
distributed setups leveraging QNET.
Priority Inheritance and Server Boost. QNX allows to
enable inheritance, in the form of priority and partition
inheritance. When inheritance is enabled, server threads inherit
the priority of the client they are serving and execute it on
behalf of the client. QNX also provide the “Server boost”
feature, aimed to minimize processing delays for blocked
high-priority threads. So, when a high-priority thread becomes
SEND_BLOCKED on a server (meaning its requests are queued
at the server and the server is not actively handling them), then
in an attempt to speed up the processing, the kernel selects
candidate server threads that may receive on the given channel
(and service the request), and boosts their priorities. Also,
when none of the server threads are RECEIVE_BLOCKED
on a channel, then the kernel boosts the priority of all server
threads that last received on that channel, with the intent that
they would finish their current processing and service the
incoming requests faster with the boosted priority. While this
feature could improve the average-case performance, it could
generally harm predictability by raising the priority of multiple
threads at the same time.
Partition Inheritance. When a server executes on behalf of a
client, it could be desirable to bill the corresponding execution
cost to the client partition. QNX handles this with the concept
of partition inheritance. Server processes can be hosted in
zero or minimal-budget partitions, and whenever a server
executes on behalf of a client, the execution is billed to the
partition of the client. Interestingly, we observed that the QNX
implementation leads to some non-intuitive (undocumented)
behavior that differs depending on whether the client and the
server run on the same node or in different nodes. We explore
this in more detail in Section III.



III. SYSTEM MODEL

This paper considers a set of m identical cores U =
{p1, . . . , pm} running the QNX APS scheduler. Cores can be
potentially located on different nodes in a distributed system.

A. Workload Model

The workload is composed of a set T = {τ1, . . . , τn} of
n real-time threads. Each thread is characterized by a priority
πi. Threads are scheduled according to partitioned scheduling,
i.e., each thread is assigned to only one core. Threads are
divided into two categories: clients and servers. Thus, the ap-
plication behavior is realized by clients that offload particular
functionalities to servers. Each client ci is characterized by
a worst-case execution time (WCET) ei. Each client thread
is released sporadically with minimum inter-arrival time Ti.
Each client thread instance needs to complete within Di ≤ Ti

time units from its release (constrained deadline). Each client
ci ∈ C ⊆ T communicates with zero or more servers threads
in S ⊂ T by requiring zero or more services.

Each server sh ∈ S provides one or more services
Q(sh) ⊆ Q, where Q is the set of all services. Servers
are expected to follow the code structure suggested by the
QNX documentation [11], shown in Algorithm 1. A server
receives all service requests on the same channel, identified
by a service type. A service σx ∈ Q is realized by means
of the QNX SyncMP, based on MsgSend()-MsgRcv()-
MsgReply(). We assume each service is provided by only
one server. This assumption allows making the system more
predictable by: (i) reducing the server boost effect, discussed
in Section II, to a single server, thus removing any uncertainty
to which server priority is boosted, and (ii) allowing to avoid
the LIFO scheduling effects that would arise when a service
can be handled by multiple servers [5]. Each service σx ∈ Q
is characterized by a worst-case service time (WCST) ωx,i,
bounding the time required to complete service σx (without
interference) when called by a client ci ∈ C. The WCST of a
service depends on the client issuing the request because, for
example, different clients may use different input data, with
potentially large effects on the time required to handle the
request.

Client WCETs and server WCSTs already include the OS
overheads to receive and transmit data.

Furthermore, an interaction between a client ci and a server
sj for a service σx is characterized by a pair of worst-
case communication delays (WCCDs) δxi,j and δxj,i, bounding
the time required to transmit and receive the data through
the physical medium, respectively. Whenever such a time is
negligible (e.g., if the client and the server is allocated to the
same core or node), δxi,j = δxj,i = 0. We consider a discrete-
time model in which all time parameters are integer multiples
of a basic time unit ϵ = 1 (e.g., a processor cycle).

For each pair of client ci and service σx, nS
i,x ∈ N is

the number of times each instance of ci requires σx. Given
a service σx, the function Q−1(σx) = sh returns the server
providing that service.

Algorithm 1 Expected structure of a server thread in QNX.
1: ch_id ← ChannelCreate()
2: while true do
3: rcv_id ← MsgReceive(ch_id, msg)
4: switch msg.type do
5: case type A
6: . . . ▷ Handle a service of type A
7: case type . . .
8: . . . ▷ Handle a service of type . . .

9: MsgReply(rcv_id, response)
10: end while

We assume service requests cannot be nested: i.e., a server
handling a request cannot perform any service request to
any other server (thus acting as a client thread). Although
supporting nested requests can be a case of practical relevance,
due to space constraints, we prefer to leave it to future work
as the QNX manual itself [5] (page 80) suggests taking special
care when supporting nested service requests because they
can lead to issues such as deadlocks. Their study would then
require extended considerations for the modeling and analysis.
The worst-case response time (WCRT) Ri of a client ci is the
longest time span from the release to the completion of any of
its instances. A client ci is said to be schedulable if Ri ≤ Di.

B. Adaptive Partitioning Scheduler Model

The system includes a set of APS partitions P =
{P1, . . . , Ps}. Each partition Pk is characterized by a nominal
budget of Bk time units. The symbol bk(t) denotes the current
budget of Pk at time t. The accounting window size is denoted
with W [6]. As in prior work [6], we restrict to the more
predictable case [12] in which also partitions follow partitioned
scheduling, i.e., each core pj ∈ U can host multiple partitions,
referred to as Pj , but each partition is managed by one core
only. For any arbitrary thread (either a client or a server)
τi, hepcl

k (τi) and hepsr
k (τi) denote the sets of all clients and

all servers with higher or equal priority than τi in the same
partition Pk, respectively, excluding τi. hepcl(τi) and lpcl(τi)
include all clients from all partitions with higher-or-equal and
lower priorities, respectively, independent of the partition. Set
Sk denotes the set of all the servers in partition Pk. We
model the supply-time given by an arbitrary partition Pk using
the supply-bound function abstraction [13]–[15], in which
sbf k(∆) bounds the minimum amount of supply provided
by partition Pk in any interval of length ∆. A supply-bound
function instance for APS has been derived in [6]. The supply-
bound function of the system partition for threads allocated on
core pk is denoted with sbf sys,pk

(∆).

C. Client-Server Interaction

Next, we formalize the behavior of the client-server inter-
action of QNX by a set of rules. The first seven rules (R1-R7)
model the baseline behavior of the mechanism without priority
and partition inheritance enabled. This scenario is referred to
as C-S (i.e., client-server). Rule R8 extends C-S to account
for priority inheritance. Rule R9-A extends R1-R8 to account
for partition inheritance in the case in which the client and the



server are in the same physical node (called LOCAL-I, local
with inheritance). Rule R9-B extends R1-R8 to account for
partition inheritance in the case in which the client and the
server are distributed in two different nodes (called DISTR-I,
distributed with inheritance).
Basic IPC-SyncMP Rules (Scenario C-S):

R1: When an instance of each client thread is released,
it is in the READY state.

R2: When a client requires a service σs it calls the
MsgSend() system call. Then, it suspends moving
to the SEND_BLOCKED state.

R3: If a client sends a message to a server that is
blocked in the RECEIVE_BLOCKED state, the server
is awakened and transits to the READY state.

R4: When a server calls the MsgReceive() system
call, if there is no message to be managed, it transits
to the RECEIVE_BLOCKED state.

R5: After receiving a message (using MsgReceive()),
the server manages the request by executing the
corresponding code (see Algorithm 1), and replies
to the client using MsgReply(). The client then
transits to the READY state. While the server handles
a request of a client, the client transitions to the
REPLY_BLOCKED state.

R6: Once a server starts processing a request, the request
is served to completion.

R7: When multiple messages are waiting on the same
channel, they are consumed in priority order by the
server, according to the priority of the client that sent
each message. Consequently, services are handled in
priority order by servers.

Additional rule for the LOCAL-I and DISTR-I Scenario:
R8: When a service request (i.e., a message) is inserted

in the queue of a server, if the priority of the
corresponding client is higher than the current server
priority, then the server inherits such priority. When
a server thread si finishes serving a service σx,
it remains with the same priority until either: (i)
a new, higher-priority service request is enqueued
in si, thus raising its priority, or (ii) the next call
to MsgReceive() selects a lower-priority service
request, and the priority of si is downgraded.

Additional rule for the LOCAL-I Scenario:
R9-A: If a server si and client cj are in the same node,

when si processes a request from cj , si inherits the
partition of cj to serve the request of cj , i.e., it
consumes the budget of the partition of cj .

Additional rule for the DISTR-I Scenario:
R9-B: If a server si and client cj are in two different nodes,

when si processes a request from cj it uses the
budget of the system partition.

D. Rule Validation

Most of the content in the rules we presented is based
on a detailed inspection of the QNX manuals. However, the

QNX OS is closed-source, and manuals do not contain enough
details to enable accurate modeling. Therefore, to complement
and corroborate our findings with empirical evidence, we
designed a specific set of experiments, and we ran them on a
real platform.

All experiments are performed on a Raspberry Pi 4B with
4 cores and 4GB RAM using the QNX 7.1 Software Devel-
opment Platform (SDP). For each of the evaluated settings,
the QNX event tracing facility is used to obtain the execution
trace. The kernel instrumented for tracing operates typically
98% as fast as the non-instrumented kernel [5]. During tracing,
events are stored in a buffer inside the kernel, from where they
are read by a data capture utility. In our experiments, event
filters are set such that only relevant events from our appli-
cation are recorded. We further extended the tracing facilities
to record detailed information on APS partition usage over
time. Where applicable, we log the APS partition statistics at
a granularity of 1ms. Furthermore, the data capture utilities
are allocated to a core that is not used for the experiments.

QNX APS does not allow enabling or disabling priority and
partition inheritance separately: therefore, in the following, we
simply refer to enabling or disabling inheritance to mean both.

1) Experiments on a single node: This set of experiments
consists of two settings: SETTING A, which does not use
APS partitions (and hence it cannot leverage partition in-
heritance but only priority inheritance, if enabled), adopting
fixed-priority scheduling without reservation, and SETTING
B, which instead uses APS.
SETTING A executes four client threads and one server

thread on the same core. Each client thread executes for
50% of its execution time before a request is sent to the
server. All clients request the same service with a WCET of
10ms and always run for their WCET. A complete description
of the setting is provided in the lower part of Fig. 2a.
Client and server parameters in the tuple are described in the
following order: period, WCET, offset, nominal priority and
required/provided service. As a server does not have its own
period or offset we use ’−’ to indicate this at the respective
places. The initial offsets of client threads are selected such
that the server s1 handles the initial request of c1 before c2,
c3 and c4 can each send a request to the server.

Listing 1 and 2 show an excerpt of the execution trace of
c2 and s1, respectively, for the case in which inheritance is
disabled. From the trace of c2 it can be observed that the
client thread transitions to READY at its release at t = 6 ms,
confirming R1. After the initial execution phase, c2 sends a
request to s1 and transitions to the state SEND_BLOCKED,
confirming R2. From the server trace, it can be seen that s1
transitions to RECEIVE_BLOCKED at t = 74.5 ms when no
more pending messages exist. The server becomes RUNNING
again after c1 sends its second request (note that the trace does
not include an explicit entry for READY as s1 directly starts
to execute). This confirms R3 and R4. The trace of c2 further
shows that the thread’s state transitions from SEND_BLOCKED
to REPLY_BLOCKED at t = 59.6 ms, which coincides with
the respective execution start of s1 to handle the request. At
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(b)
Figure 2: SETTING A without priority inheritance and with-
out APS (a) and with priority inheritance and without APS
(b). Execution trace of the first 80ms. The thread parameters
of SETTING A are shown in the bottom party of (a) and the
priority trace of s1 is shown in the bottom part of (b).

t = 69.5 ms the server completes the request and c2 transitions
to RUNNING, confirming R5.

Listing 1: Partial trace of c2.
6.0015 ms READY CPU: 1 Prio: 253
6.0052 ms RUNNING CPU: 3 Prio: 253
10.9591 ms SEND_BLOCKED CPU: 3 Prio: 253
59.6297 ms REPLY_BLOCKED CPU: 3 Prio: 253
69.5848 ms RUNNING CPU: 3 Prio: 253

Listing 2: Partial trace of s1.
54.6692 ms READY CPU: 3 Prio: 252
59.6271 ms RUNNING CPU: 3 Prio: 252
69.5835 ms READY CPU: 3 Prio: 252
74.5402 ms RUNNING CPU: 3 Prio: 252
74.5426 ms RECEIVE_BLOCKED CPU: 3 Prio: 252
204.9591 ms RUNNING CPU: 3 Prio: 252

Fig. 2a depicts the same execution trace where inheritance
is not enabled. At t = 30 ms s1 finishes serving the request
of c1. There are three outstanding requests in the queue of
the server that arrived in the sequence c2, c3, and c4. The
server first handles the request by c3, then the request by c4,
and finally the request of c2. Therefore, R7 is confirmed, and
services are handled in priority order by the server. R6 can
further be confirmed as the initial request of c1 is served to
completion before other requests are handled in priority order.
This is a direct consequence of the server implementation (see
Algorithm 1).

Fig. 2b depicts the same system, but inheritance is enabled.

The priority of s1 is shown in the lower part of Fig. 2b. s1
starts to execute at its nominal priority 252. At t = 5 ms s1
starts to handle the request of c1. Consequently, s1 inherits the
priority of c1 and executes at a priority of 250. At t = 11 ms,
c2 sends a request to the server, followed by a request from
c3 at t = 17 ms. We can observe that the server priority is
following accordingly, to 253 at t = 11 ms and to 255 at
t = 17 ms. This confirms the first part of R8. A difference
between Fig. 2a and Fig. 2b can be observed at t = 35 ms.
s1 executes at the highest priority and completes the request
of c1. The current priority of s1 is 255, and only one request
of c2 is pending (with priority 253). s1 continues executing at
priority 255 to call MsgReceive() and retrieve the pending
request by c2, and its priority changes to 253 before the server
is preempted by c4 (confirming the second part of R8). Thus,
the order of requests that are handled by the server is different
compared to the case without priority inheritance.
SETTING B is used to examine how APS partitions are

handled in conjunction with the SyncMP mechanism. The
system comprises five threads in total. Two threads act as client
threads (c1 and c2), one server thread (s1), and two ordinary
threads (τ1 and τ2). As before, each client executes for half
of its nominal execution time before it places a request to the
server. Thread parameters are listed next to the execution trace
in Fig. 3. Please note that the tracing tool of QNX does not
show the current budget of each partition, but the cumulative
time that threads of a respective partition executed within the
last scheduling window [t − W, t): the corresponding budget
can be read as shown for P1 in Fig. 3(a). τ1 and c1 are assigned
to partition P1 and τ2, c2 and s1 are assigned to partition P2.
Each APS partition has a nominal budget of 40%. All threads
that are mapped to P1 are allocated to core 1, and all threads
that are mapped to P2 are allocated to core 2. Fig. 3 depicts
the recorded execution trace (top), APS trace (middle), and
priority trace (bottom) for the case with (a) and without (b)
inheritance enabled.

In the case without inheritance (Fig. 3a), we can observe
that the SyncMP mechanism is not affected by the APS
scheduler. Furthermore, each APS partition consumes budget
when a respective thread executes. For P2 this means the
server exceeds its nominal budget at t = 40 ms, but since
no other thread is assigned to the same core P2 can consume
the idle time. We can also observe that a thread that preempts
a server, while the server serves a request using an inherited
APS partition, executes in its nominal partition (τ2 between
t = 43 ms and t = 53 ms). From these observations, we can
conclude that R9-A holds for the case that client and server
are mapped to the same node.

2) Experiments on a distributed system: This section in-
vestigates the SyncMP properties when client and server are
allocated on two different nodes. In our experimental setup,
both nodes are identical to the one used for the single-node
experiments and connected via Ethernet.
SETTING C executes two client threads c1 and c2 and one

server thread s1 on two different nodes connected via QNET.
c1 is allocated to Node 1 and a partition P1. c2 and s1 are
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(a) Inheritance Disabled
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(b) Inheritance Enabled
Figure 3: (top) Execution trace of SETTING B in the first 70ms. (middle) Partition budget usage of P1 (red), P2 (blue).
(bottom) Priority of server s1. The thread parameters are described in (a) in the following order: period, WCET, offset,
nominal priority, required/provided service. The assigned partition and core are indicated for the thread groups. Each partition
is described by its budget Bk, and W =100ms. The current budget bk(t) is illustrated for P1 in (a).

allocated to Node 2 and a partition P2. Inheritance is enabled
for the communication channel. Thread parameters can be
found in Fig. 4. Fig. 4 shows the recorded trace of Node 1 and
Node 2. Note that timestamps are not synchronized and exhibit
an about 5 ms offset due to independent trace collection. The
key findings from this experiment are:
(1) Priority inheritance works across node boundaries. This can
be seen as πs1 inherits the priority of c1 and c2 at t = 200 ms
and t = 220 ms respectively.
(2) Partition inheritance behaves differently across node
boundaries. While requests by c2 are served by consuming
budget of P2, requests by c1 are not served by consuming
budget of P2. In fact, requests of c1 are neither consuming
the budget of P1 or P2 but instead consume budget from the
(default) system partition. This observation corroborates the
validity of R9-B.

E. Discussion

In this section, we formalized the behavior of the QNX OS
SyncMP mechanism through a set of rules, and we validated
them with a series of experiments on a real platform, paving
the way for a sound timing analysis. We observe scenarios that
make the timing analysis challenging. This is the case when
two threads are consuming the budget of an APS partition at
the same time. This is shown in Fig. 3b, between t = 28 and
t = 38, where the budget in P1 is consumed by τ1 and s1.

Furthermore, experiments with the client and the server
distributed over different nodes highlight the importance of
performing them, uncovering undocumented behaviors (R9-B)
with substantial effects on the timing behavior. One possible
explanation for the observed APS inheritance across nodes is
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Figure 4: Execution trace of SETTING C on Node 1 and Node
2 (note: timestamps on different nodes are not synchronized).

the lack of platform information across different nodes (CPU
frequency etc.), while the APS mechanism keeps track of
budgets in clock ticks [8]. Exchanging APS information would
further likely lead to increased communication bandwidth
requirements.

IV. RESPONSE-TIME ANALYSIS

The problem we address in this section is the following:
how to bound the WCRT of a client thread that uses services
provided by a server in a QNX-based system? We start dis-
cussing the case in which the priority and partition inheritance
mechanism is not active. Before proceeding, we recall the
needed background for analyzing self-suspending tasks.
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A. Background on self-suspending tasks

A client thread ci can be modeled as a self-suspending
task [9], by noting that every time ci uses MsgSend() to
request a service (rule R2), it self-suspends until the service
is completed and the corresponding server calls MsgReply()
system call (rule R5). This is shown in Fig. 5.

To introduce the needed background for bounding the
WCRT of a self-suspending task (SS-task), we consider a
set ΓSS

i = {τ SS
1 , . . . , τ SS

n } related to a partition Pk. Each SS-
task is characterized by a minimum inter-arrival time Ti, a
constrained deadline Di ≤ Ti, a WCET ei, and a suspension
time bound Si, under fixed-priority partitioned scheduling.

Furthermore, let hepSS
z (τ

SS
i ) be the set of SS-tasks with a

higher or equal priority of τ SS
i on the same core px, excluding

τ SS
i itself. The WCRT Ri of a task τ SS

i can be bounded with
the least positive solution of the following equation:

sbf k(Ri) ≥ ei + Si +
∑

τSS
j ∈hepSS

z (τSS
i )

⌈
Ri +Rj − ej

Tj

⌉
· ej (1)

by modeling the self-suspension of the task under analysis
as execution time and self suspensions of interfering tasks as
jitter [9]. In Eq. (1), which computes the response time bound
Ri, it is assumed to use a pre-existing WCRT bound Rj for
τ SS
j , thus introducing a cyclic dependency. The dependency

can be broken by assuming that all jobs are killed after the
deadline: this allows initially setting the WCRT bounds Rj to
the deadline Dj . In this way, if threads are schedulable, no jobs
are killed, making the assumption not necessary (more details
in [16]). Iterative improvements are possible by running the
analysis multiple times for all tasks, each time obtaining new
(smaller) bounds for Ri leveraging Rj (see Eq. (1)), updating
the values of each Ri with the newly computed Ri, and re-
iterating the process until no improvement is achieved between
two consecutive runs of the analysis [16]. Finally, note that the
equation of Section 4.2.3 in [9] has been extended in Eq. (1)
to consider a more general supply-bound function sbf k(∆),
while [9] considered a core supply equal to the total core
capacity. The extension is safe as long as the corresponding
partition does not deplete the budget when it becomes idle
(e.g., as it occurs for a polling reservation [12]). However, this
is not the case for the APS partition reservation algorithm [6],
which ensures each suspending thread that the remaining
budget after being awakened from the suspension will be no
less than the one it had before suspending if no interfering

workload in the same partition consumed it in the meantime.
Our analysis, presented in the following, remains compatible
with the case of a fully-dedicated core, which can be modeled
with each core having a single partition allocated on it, with
a supply-bound function sbf k(∆) = ∆, ∀pk ∈ U .

B. Baseline Response-Time Analysis (C-S)

Deriving a bound on the suspension time. We start focusing
on the C-S scenario, which consists in the baseline client-
server mechanism with no inheritance enabled. By rule R2,
a client task self-suspends for waiting for its service request
to be served. Therefore, to build a response-time analysis
framework to guarantee the schedulability of client threads,
we first bound the time spent waiting by service requests to
servers, i.e., the suspension time, in the SS-task theory jargon.

For each service σx, let Rsc
x,i be a bound on its worst-case

response time when the service request is issued by ci, i.e.,
the longest time span from when a service request for σx is
received by its server sh = Q−1(σx) to when it completes
(i.e., when MsgReply() is used to reply, see R5).

Therefore, the overall self-suspending time of a client ci
is bounded by the sum of the WCRT bounds all the services
multiplied by nS

i,x, the number of times ci calls σx, plus the
WCCD required for ci to communicate with sh for service
σx:

Si ≤
∑
σx∈Q

(nS
x,i · (Rsc

x,i + δxi,h + δxh,i)) (2)

Next, we bound the WCRT Rsc
x,i of an arbitrary service σx

in setting C-S. To this end, let sh = Q−1(σx) be the server
that manages σx.

To begin, we aim at deriving an analysis that is as flexible
as possible, allowing the co-existence of multiple clients and
servers in the same partition (which can be helpful in some
cases since APS limits the maximum number of partitions on
one node to 32 [7]).

Hence, given an arbitrary service σx under analysis handled
by a server sh allocated to a partition Pk, we classify three
different sources of interference:

• The interference due to other clients allocated to the same
APS partition Pk, bounded by Icl

h (∆).
• The interference caused by any other server than sh in

Pk, bounded by Ioth-sr
h (∆).

• The interference due to the processing of other service
requests in the same server sh, bounded by Ism-sr

h,x (∆).
Based on these sources of interference, Lemma 1 presents

a bound on the WCRT of a service σx issued by a client ci.

Lemma 1. Consider an arbitrary instance σ′
x of a service σx

released at time A and issued by a client ci. If S∗ is the least
positive solution of the following inequality

sbf k(S
∗) ≥ ϵ+ Icl

h (S
∗) + Ioth-sr

h (S∗) + Ism-sr
h,x (S∗) (3)

then σ′
x starts running at most at A + S∗. If R∗ is the least

positive solution of the following inequality

sbf k(R
∗) ≥ ϵ+ Icl

h (R
∗)+ Ioth-sr

h (R∗)+ Ism-sr
h,x (S∗)+ωx,i (4)



where then σ′
x completes at most at A + R∗ and Rsc

x,i = R∗

is a bound on the response time of σx issued by ci.

Proof. By definition Icl
h (S

∗), Ioth-sr
h (S∗), and Ism-sr

h,x (S∗) bound
the interference due to clients, services running in other servers
in the same APS partition, and services handled by the same
server in the interval [A,A + S∗). Since S∗ fulfills Eq. (3),
the supply provided by partition Pk exceeds the demand by at
least ϵ. Therefore, since σ′

x is released at A, σ′
x starts being

handled by sh at most at A+ S∗.
To prove Eq. (4), note that, internally to server sh, σ′

x

is handled in a non-preemptive fashion. It follows that in
[A + S∗, A + R∗), σ′

x cannot suffer interference from other
services handled by the same server. Hence, the overall inter-
ference due to other service requests in [A,A+R∗), is bounded
by Ism-sr

h,x (S∗). Conversely, interference due to other client
threads and requests handled in other servers can interfere also
within [A+ S∗, A+ R∗), and the corresponding interference
components are bounded by Icl

h (R
∗) and Ioth-sr

h (R∗). Since by
assumption Rsc

x,i = R∗ satisfies Eq. (4), the supply sbf k(R
∗)

provided by Pk exceeds the demand (which includes the
aforementioned interference components and the WCST ωx,i)
by at least ϵ. It follows that σ′

x completes within [A,A+R∗),
and R∗ is a valid response-time bound for σ′

x.

Thanks to Lemma 1, we are able to bound the WCRT
Rsc

x,i of a service provided that the delay components Icl
h (∆),

Ioth-sr
h (∆), and Ism-sr

h,x (∆) are know. Next, we provide bounds
for such components.

Similarly to classical jitter-based analysis for self-
suspending tasks (recalled in Section IV-A), the interference
due to clients Icl

h (∆) is bounded by the sum of the individual
interference contributions by higher-or-equal-priority clients in
the same partition Pk of the server sh handling σx. Hence, it
holds,

Icl
h (∆) ≜

∑
cj∈hepcl

k (sh)

⌈
∆+Rj − ej

Tj

⌉
· ej . (5)

We omit a formal proof to show Eq. (5) to be sound
as it is analogous to standard results for self-suspending
tasks [9]. As discussed in Section IV-A, Eq. (5) requires a pre-
existing bound on the response time of high-priority clients
cj ∈ hepcl

k (sh), which can initially be upper-bounded with
its deadline Dj , and possibly refined in an iterative fashion
as discussed in Section IV-A. This technique, well-known in
literature (e.g., see [9, 16]–[19]), is used multiple times in the
following: the corresponding pre-existing WCRT bounds are
denoted with the symbol R to distinguish from those are under
derivation (denoted by R).

Next, we define Ioth-sr
h (∆).

Lemma 2. In setting C-S, it holds

Ioth-sr
h (∆) ≜

∑
sa∈hepsr

k (sh)

∑
σs∈Q(sa)

∑
ce∈C\ci

⌈
∆+Re

Te

⌉
·nS

s,e·ωs,e.

(6)

Proof. First, note that any other server with a priority higher
than or equal to sh can interfere with sh (sh is excluded by
definition of Ioth-sr

h (∆)). These servers are contained into the
set hepsr

k (sh). For each interfering server sa, each service σs

handled by that server (i.e., in set Q(sa)) can interfere with
σx under analysis. Each service request is triggered at most
nS
e,s times by each instance of each client ce ∈ C \ ci. Note

that the client ci issuing the request for σx under analysis can
be excluded from the set of clients issuing interfering requests
because the QNX SyncMP is synchronous (rules R2-R5) and
hence ci has at most a pending service request at the same
time. Knowing that each service σs can take at most ωs,e time
units, it remains to bound the maximum number of service
requests issued by each client ce ∈ C \ ci that may contribute
to interference in an arbitrary interval [t, t+∆). Such requests
are determined by client’s jobs, which are released according
to a minimum inter-arrival time Te. By definition of WCRT
bound, service requests issued by clients job released before
t − Re must have completed at t, and therefore they cannot
contribute to the interference in [t, t+∆). Therefore, only jobs
released in [t−Re, t+∆) may contribute. The lemma follows
by noting that at most

⌈
∆+Re

Te

⌉
·nS

e,s service requests then be

issued in [t−Re, t+∆).

Lemma 3 bounds the interference due to other services
handled by the same server.

Lemma 3. In setting C-S, it holds

Ism-sr
h,x (∆) ≜

∑
σs∈Q(sh)

∑
ce∈hepcl(ci)

⌈
∆+Re

Te

⌉
·nS

s,e·ωs,e+Bsm-sr
h,x ,

(7)
where Bsm-sr

h,x = max
σl∈L,cb∈lpcl(ci)

ωb,l, with

L = {σl ∈ Q(sh) : ∃cb ∈ lpcl(ci) ∧ nS
b,l > 0}.

Proof. By rule R7, any service request issued by a client
with priority higher than or equal to ci in any partition (set
hepcl(ci)) can interfere with σx in analysis. Analogously to
Lemma 2, each of such service instance interfere for up to⌈
∆+Re

Te

⌉
·nS

e,s ·ωs time units. By rule R6, each service runs to
completion once started. Therefore, any low-priority service
started just before σx is issued can block σx itself, for at most
the duration of a single service. Low-priority blocking is then
bounded by the longest duration of a service request from a
low-priority client, i.e., by Bsm-sr

h,x , proving the bound.

Bounding the WCRT of clients. The previous lemmas allow
to bound the suspension time. Such a bound is used next in
Lemma 4 to bound the WCRT of a client.

Lemma 4. Consider an arbitrary instance of ci released at
time A. If Ri is the least positive solution of the following
inequality

sbf k(Ri) ≥ ϵ+ ei + Si + Icl
i (Ri) + Ioth-sr

i (Ri) (8)

then ci completes no later than A+Ri and Ri is a bound on
the response time of ci in setting C-S.



Proof. A client ci can be delayed either by: (i) interference
due to other clients and servers running in the same partition
Pk, (ii) lack of supply due to Pk, and (iii) suspension time
due to the synchronous offloading to servers (following the
suspension-oblivious approach to model the suspension of the
interfered thread [9], see Section IV-A). Delays due to (i)
are accounted in Icl

i (Ri) and Ioth-sr
i (Ri) delays due to (ii) are

accounted in the supply-bound function sbf k(Ri), and (iii) is
accounted for in Si, which can be bounded with the results
of Section IV-B. Since by assumption Ri satisfies Eq. (8), the
supply sbf k(Ri) provided by Pk exceeds the demand (which
includes the interference plus at most ei units to execute ci)
by at least ϵ. It follows that σ′

x completes no later than A+Ri,
and Ri is a valid response-time bound for ci.

The definitions of Icl
i (∆) and Ioth-sr

i (∆) are analogous to
those presented in Section IV-B (i.e., Eq. (5) and Eq. (6)) but
specialized by using the sets hepcl

k (ci) and hepsr
k (ci) in place

of hepcl
k (sh) and hepsr

k (sh) to denote the sets of all clients and
servers with higher or equal priority than ci, respectively, and
without excluding ci from C in the sum of Eq. (6).
Analysis and modeling alternatives. In this paper, we adopt
the more flexible dynamic self-suspending model [9], mod-
eling the suspension of the interfered thread as computa-
tion (suspension-oblivious) and the suspension of interfering
threads as released jitter. From the modeling side, we deem
it more accessible for an application designer to know only
the overall WCET of a client and a suspension-oblivious
approach. Conversely, adopting the segmented self-suspending
model requires knowing the WCET bounds of each code
chunk between two consecutive service calls, which can be
hard to obtain. Nevertheless, when this information is avail-
able, a SPLIT analysis [9] approach could be adopted, and
precision can possibly be improved. However, none of the ap-
proaches dominates the other, as SPLIT would incur additional
accounting (for each segment) of the supply-bound function
blackout time [6]. In contrast, the suspension-oblivious ap-
proach adopted in this paper may be more pessimistic when
the client and the server are in the same core, as the same high-
priority interference could be counted twice, both in the client
and the server interference. The combination of the proposed
method with SPLIT and the derivation of ad-hoc methods (e.g.,
using MILP formulations) to reduce the pessimism will be
addressed in future work.

C. Response-Time Analysis with Inheritance (LOCAL-I)

Next, we analyze the LOCAL-I setting, which occurs when
inheritance is enabled, and pairs of clients and servers are on
the same node. This setting is much harder to analyze in the
general case. We identify two main analysis challenges and
propose solutions that allow keeping the analysis simple.
C1 - Multi-supply over time. A pending service request
instance σ′

x under analysis can be interfered with by high-
priority requests from different clients, which can be allocated
to different APS partitions with different configurations and
hence with a different supply-bound function sbf k(∆). Thus,

a general analysis should derive the worst-possible sequence of
interfering requests to σ′

x and the state of the supply functions
of the corresponding (potentially different) client partitions
when such service requests produce interference in order to
provide the lowest possible combination of supply provided
to the server.
C2 - Double-rate use of the budget. If the client’s partition
Pk includes multiple threads and another partition Py starts
consuming Pk’s budget due to the partition inheritance mech-
anisms, Pk and Py can consume the budget of Pk in parallel,
at a double rate, making it hard to lower-bound the partition
supply (see Fig. 3b between t = 28 and t = 38, where the
budget in P1 is consumed by c1 and s1).

Due to its complexity, we leave the general case to future
work, and we target a more accessible yet practical case.

Therefore, we make the following simplifying assumptions:
A1. Each server handles requests from only one client.
A2. No other thread runs in the same partition of a client.
A3. No other thread runs in the same partition of a server.

This setting is representative of many real cases where it is
desirable to free clients and servers from interference due to
other workloads, allocating them to dedicated partitions while
still allowing to serve multiple clients by splitting the server
code into multiple server threads.

Assumptions A1-A3 are largely beneficial from a pre-
dictability perspective. Thanks to A2 and R2-R5, at most
one thread can consume the budget of a client’s partition
Pk at a time, thus avoiding the supply to be consumed at a
double rate (C1). This allows using the existing bound for
sbf k(∆) that leverages this assumption [6]. With A1, the
server partition inherits the budget of a single partition, i.e.,
the one of its client, thus avoiding the problem of combining
the supply function of the server partition with multiple
supply functions of different clients (C2). Finally, with A3,
the server partition can be configured with zero budget, thus
also avoiding combining its supply function with the one of
the corresponding client. Lemma 5 bounds the response time
under A1-A3.

Lemma 5. Consider an arbitrary instance of ci released at
time A. If A1, A2, and A3 hold, and Ri is the least positive
solution of the following inequality

sbf k(Ri) ≥ ei +
∑
σx∈Q

(nS
x,i · (ωx,i + δxi,j + δxj,i)) (9)

then ci completes no later than A+Ri and Ri is a bound
on the response time of ci in setting LOCAL-I.

Proof. Due to A1, the server thread sh = Q−1(σx) handles
requests only from the client ci under analysis. Due to rules
R2-R5, the considered IPC mechanism is synchronous. Due
to A3, no other workload run in the partition of the server
thread sh = Q−1(σx). Therefore, a service request σx ∈ Q
with nS

x,i > 0 is immediately ready to be served in the server
when received, if the client’s partition has current budget
bk(t) > 0. Thanks to A2, no other workload can run in
parallel in the client’s partition Pk, thus making sbf k(∆)



(as defined in [6]) a valid abstraction for the service supply
provided by Pk (i.e., challenge C2 is avoided). The lemma
then follows by noting that the resulting scheduling behavior
is compatible with the one of a self-suspending task with no
interference (i.e., executed in isolation), which can be analyzed
by accounting for the suspension time as computation [9], with
Si =

∑
σx∈Q(n

S
x,i · (ωx,i + δxi,j + δxj,i)).

D. Response-Time Analysis with Inheritance (DISTR-I)

Finally, we analyze the setting DISTR-I, which occurs
when the client ci and the server sh are in two different nodes,
and they communicate through QNET (see Section III-D).
DISTR-I results in having the expected inheritance of pri-
orities, but requests are managed using the system’s partition
budget (rule R9-B). This introduces a third analysis challenge:
C3 - Derivation of the residual supply-bound function. In
APS, the system partition is the parent partition from which all
partitions are subtracted when created. Therefore, to bound the
budget that could be used to run the service requests directed
to a server, it is necessary to bound the residual supply-bound
function [20] sbf sys,pq

(∆).
In principle, this is possible by bounding the demand due

to all non-system partitions allocated on a specific core and
subtracting it from the overall processing time provided by
the core. We leave the derivation of the residual supply-bound
function under APS to future research while we focus on a
simpler yet practical setup. To simplify the analysis, in this
case we assume that:
A4. Servers are allocated in dedicated cores where all threads
are only assigned to the system partition. These cores host no
partitions other than the system partition.

Under this assumption, the residual supply-bound function
for a core pq equals the overall processing time provided by
the core, i.e., sbf sys,pq

(∆) = ∆. Instead, under DISTR-I,
challenges C1 and C2 are not present because they are caused
by the inheritance of the budget from the client partition. Also,
note that the solution used for the LOCAL-I setup does not
work in this case since it exploits the fact that under LOCAL-I
the server uses the budget of the client partition. To extend
the baseline analysis of Scenario C-S to work in Scenario
DISTR-I, note that this affects the suspension time bound
of Section IV-B as follows. First, the suspension time bound
needs to consider the system partition under assumptions A4,
with sbf sys,pq

(∆) = ∆. Second, the suspension bound of
Scenario C-S needs to be modified to account for priority
inheritance (rule R8). Priority inheritance is an inter-thread
phenomenon. Hence, the interference due to other service
requests in the same server (term Ism-sr

h,x (∆)) is analogous to
Lemma 3. Differently, the interference due to other threads
need to be adapted to consider the inheritance due to rule R8.

To this end, we first specialize the definition of Icl
h (∆) using

the set hepcl
sys,pq

(ci) in place of hepcl
sys,pq

(sh) to denote the
sets of all clients with higher or equal priority than ci since
due to R8 the set of clients that can interfere with σx under
analysis depends on the priority of ci (and not of sh, as in
setting C-S).

Lemma 6 defines Ioth-sr
h (∆) for the DISTR-I setting.

Lemma 6. In setting DISTR-I, under A4, it holds
Ioth-sr
h (∆) ≜ Binh

h,x + Ihep
h (∆), where

Ihep
h (∆) =

∑
sa∈Ssys,pq\sh

∑
σs∈Q(sa)

∑
ce∈hepcl(ci)

⌈
∆+Re

Te

⌉
nS
s,eωs,e,

(10)
and

Binh
h,x =

∑
sa∈Ssys,pq\sh

max
σl∈L,cb∈lpcl(ci)

ωb,l, (11)

with L = {σl ∈ Q(sa) : ∃cb ∈ lpcl(ci) ∧ nS
b,l > 0}.

Proof. Consider a service request σx under analysis issued by
a client ci and managed by a server sh = Q−1(σx). Ioth-sr

h (∆)
consists of two components: (i) interference due to service
requests from higher-or-equal priority clients ce ∈ hepcl(ci)
and (ii) blocking due to other servers that boost their priority.
Consider first (i). By R8, since each server inherits the
priority of the client issuing a request, in principle any server
sa ∈ Ssys,pq

\ sh in the system partition of the same core can
interfere with sh (sh excluded). For each interfering server sa,
due to R8, only services σs issued by clients ce with higher
or equal priority can interfere, irrespective to the partition,
i.e., those from hepcl(ci). Therefore, similar to Lemma 2, (i)
is bounded by Ihep

h (∆). Consider now (ii). We first show that
each server sa ∈ Ssys,pq

\sh can block at most once σx. When
server sa starts processing a request from a client cb ∈ lpcl(ci),
it may receive a service request from a client cx with priority
higher than πi. By the second part of R8, then sa rises its
priority πx, thus causing blocking to the service request under
analysis. Still due to R8, once sa calls again MsgReceive(),
it either (a) lowers its priority, thus being preempted by sh, or
(b) starts servicing a higher-priority request than the one under
analysis. In both cases, σx cannot be blocked again. Finally,
each server sa ∈ Ssys,pq

\ sh cannot contribute to blocking
for more than the length of the longest service requested by
a client cb ∈ lpcl(ci) that sa manages. Hence, (ii) is bounded
by Binh

h,x. The lemma then follows.

Finally, note that whenever a client is allocated to the same
core of one or more servers, the response-time bound of
Lemma 4 needs to be updated with a blocking term, similar
to Eq. (11).

V. EVALUATION

This section presents the results of three evaluation studies.
The first one evaluates the communication delay δxi,j in both
the local and distributed setting. The second study targets a
synthetic case where we compare the WCRT provided by the
analysis with measurements obtained by running the applica-
tion on an actual platform running QNX. All experiments on
the QNX platform use the same setup that is used for the
validation experiments in Sec.III-D. Finally, we evaluate the
analysis on a realistic-case study based on the WATERS 2019
Challenge by Bosch [10] for both local and distributed setups.



96 25
6

51
2

76
8

10
24

12
80

15
36

17
92

20
48

Message Size [B]

0.01

0.02

R
ou

n
d

tr
ip

L
at

en
cy

[m
s]

max

avg

min

(a)

96 25
6

51
2

76
8

10
24

12
80

15
36

17
92

20
48

Message Size [B]

0.5

1.0

R
ou

n
d

tr
ip

L
at

en
cy

[m
s]

max

avg

min

(b)

Figure 6: Round-trip latency of the IPC communication for a
varying length of request and reply message on the same (a)
and between two nodes (b).

A. Evaluation of Communication Latency.

The experimental setup used is the same as described in
Section III for the validation experiments, in which we used
one client and one server. The server does not perform any
computation and replies directly after receiving the message.
In this experiment, we recorded the latency required to perform
and return from a call to msg_send(), issued by the client.
The measured latency thus includes both the time required to
reach the server from the client and to come back from the
server to the client. A varying message size (same value for
request and response message) is used in the experiment for
messages in the range [96B, 2048B], and 1000 measurements
are performed for each configuration.

Fig. 6 shows the results for the case where client and server
are allocated on the same node (Fig. 6a) and on different nodes
(Fig. 6b). In the local communication case, for the observed
range of message sizes, the communication delay remains
almost constant for messages smaller than 256B and again for
messages with a size larger than 256B. This jump in latency
is likely caused by data-size-dependent implementations to
copy data within the kernel (e.g., page flipping instead of the
usual copy operations), as indicated in the QNX manual [5].
The observed latencies in the distributed case increase more
distinctly with varying message size. In addition to the pure
communication delay, QNET protocol overheads are observed.

B. Comparing Measurement Against Analysis Results.

Then, in the second evaluation study, we compared the an-
alytical WCRT bound on the response time of a client against
the largest observed value within several experiment runs (50
instances per data-point) of 10 s on the QNX platform, with
and without inheritance enabled. A client c with T = 200ms,
e = 20ms is assigned to a partition P1 on a core A, with 60%
of the overall budget and requires a service σ. A server that
serves σ is allocated to a separate partition P2 on a core B
with 40% of the overall budget. The interfering workload is
allocated to both cores in separate partitions, consuming the
remaining budget, which would have otherwise been used by
P1 and P2 leveraging APS’s reclaiming. Priorities are assigned
such that the interfering workload on core A has a higher
priority than the client; the client has a higher priority than the
interfering workload on core B, and the server has the lowest
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Figure 7: WCRT bounds vs. measurement results.

priority. Measurements are obtained for a varying worst-case
service time of σ in the interval [10, 100] ms in steps of 10ms.

Fig. 7 shows that the measurement results for the case
with inheritance are very close to the computed bounds,
demonstrating the tightness of our approach for this setting.

C. Automotive Case Study.

The case study investigates an application based on a
next-generation automotive application, originally presented
at WATERS’19 [10]. The application realizes an end-to-end
autonomous driving application as shown in Fig. 8. For a
detailed description of the case study we refer to [19, 21].

For the evaluation, the focus is put on the threads Detection
and Localization. In the original model, both threads offload
parts of their computation to accelerators. We adapted the
case study to realize this by the QNX’s SyncMP mechanism.
Thus, Detection requires the service σ1 with a WCST ω2 =
99.8ms and Localization requires the service σ2 with a WCST
ω1 = 99.2ms. For each service, a server thread is added to
the system and serves σ1 and σ2, respectively. Each client
and server is allocated to an APS partition. If not otherwise
stated, the client thread partitions and server partitions have a
budget of 50% and 60% of the overall budget of their cores,
respectively. Priorities are assigned based on a rate monotonic
order, and the servers are assigned a lower priority than the
client threads. Communication delays have been set according
to the maximum measured latencies in Fig. 6 for a message
size of 1 kB. See the lower part of Fig. 8 for all parameters. All
other threads of the case study are allocated to other partitions.
Other threads’ execution does not affect the presented results
thanks to the provided timing isolation between partitions.
Effect of worst-case service time. The worst-case service time
of σ2 is varied from 5 to 500ms in steps of 5ms. Fig. 9a
shows the resulting response time bounds under the setting
C-S and LOCAL-I for both client threads. The Detection
client experiences a constant improvement between the to
cases, while the Localization client’s improvement is growing
with the worst-case service time of σ2. This demonstrates the
effectiveness of the inheritance mechanism for this setting.
Effect of distributed deployment. This experiment targets a
comparison between the C-S and the DISTR-I setting. The
Detection and Localization server are moved to a separate
node and placed inside the system partition with a budget
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Figure 9: (a) Varying WCST of σ2 for C-S and LOCAL-I.
(b) Comparison between C-S and DISTR-I.

of 100% (to comply with A4), together with an additional
interfering thread τx with Tx = 200ms and ex = 50ms. The
Detection server has been configured with the lowest priority,
the Localization server with the second lowest priority, and τx
has a higher priority than both servers. The priorities of both
clients are higher than the one of τx.

The results are shown in Fig. 9b. In setting C-S, both
servers receive interference from τx. In contrast, in the setting
DISTR-I, servers inherit the priority of the client threads,
which are higher than τx’s priority. This allows for reducing
the interference suffered by the server threads, leading to con-
siderably smaller suspension-time bounds and hence WCRT
bounds for the client threads.

VI. RELATED WORK

To the best of our knowledge, only a few works studied the
timing predictability of the QNX OS. The only two works are
due to Dasari et al. [6, 8]. The first work [8] compared different
configurations of the QNX OS in simulation. In the following
paper [6], an end-to-end analysis for event chains under the
APS scheduler of QNX has been proposed. However, none
of these works considered the QNX SyncMP IPC and how it
interacts with the APS scheduler.

Less close to our work, other research lines considered
IPC protocols. For example, Brandenburg et al. [22] proposed
an IPC protocol enabling temporal and logical isolation for

mixed-criticality systems. Mergendahl et al. [23] studied the
timing-related ”Thundering Herd Attack” to synchronous IPC
and budget management mechanisms, targeting the seL4-
µ-kernel. Other works targeted inter-process communication
by studying communication mechanisms and paradigms [24]–
[28], while other proposals come from the context of hyper-
visors [29, 30] and separation kernels [31]–[34].

Priority-and-budget inheritance protocols have been studied
for a long time, mainly in the context of accessing lock-
protected shared resources [35]. The seminal work on pri-
ority inheritance is due to Sha et al. [36] in 1990. Later
on, many protocols have been proposed to avoid priority-
inversion effects, also considering applications protected by
reservation servers. Most related to QNX are the approaches
based on budget inheritance [37]–[40]. Many different other
approaches have been proposed over the years [41]–[49] but
all considering lock-protected shared resources rather than a
client-server mechanism as in this paper.

VII. CONCLUSIONS AND FUTURE WORK

This paper explored the SyncMP mechanism of QNX to
implement the client-server paradigm. We performed an exten-
sive set of experiments to derive a sound model for both local
and distributed setups, considering the interaction of SyncMP
with the APS reservation-based scheduler of QNX. We ex-
plored the behavior of the priority and partition inheritance
features of APS, unveiling some un-documented behaviors
with crucial implications on predictability. The model allowed
us to derive a worst-case response time analysis for threads
using the client-server paradigm. We also showed some key
analysis challenges that arise on some of the considered setups,
proposing guidelines (in the form of practically viable analysis
assumptions) that system designers can conveniently use to
overcome them and improve predictability. These challenges
also highlighted that it would be beneficial for predictability
if the QNX OS could provide options to enable priority
and partition inheritance separately. The evaluation showed
how, thanks to the analysis, it is possible to reason on the
suitability of a system configuration (e.g., in terms of priority
assignment and budget configuration), at design time, without
the need to deploy the system on the actual platform using
a profile-based empirical approach. This paper gives rise to a
considerable number of research directions for future work.
For example, more sophisticated analysis methods can be
devised to deal with the challenges highlighted in Section IV-C
and Section IV-D. Other research directions include the study
of the real-time behavior of nested service requests and other
IPC mechanisms of QNX, such as pulses and signals, extend
the analysis to segmented or hybrid [50] self-suspending task
models, and derive optimization algorithms to set the system
parameters based on the analysis automatically.
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