
Modeling the SL-LET paradigm in
AUTOSAR Adaptive

Davide Bellassai*⋄, Gerlando Sciangula*⋄, Claudio Scordino⋄, Daniel Casini*, Alessandro Biondi*
*Scuola Superiore Sant’Anna, Pisa, Italy

⋄Evidence S.r.l., Pisa, Italy

Abstract—The AUTOSAR consortium proposed the AU-
TOSAR Adaptive standard to tackle the challenges introduced
by the design of modern automotive systems. It consists of a
service-oriented architecture (SoA) implemented in C++ and
built on top of POSIX operating systems. However, unlike the
previous AUTOSAR Classic specifications, this novel standard
does not address non-functional requirements, including deter-
minism, which is of key importance to guarantee the system’s
functional safety. This paper proposes a modeling extension to
the AUTOSAR Adaptive standard aiming at guaranteeing a
deterministic execution by leveraging the System-Level Logical
Execution Time (SL-LET) paradigm, already used in the context
of AUTOSAR Classic. A prototype implementation is also pro-
posed, which is used to experimentally corroborate the feasibility
of the proposed model extension with an evaluation based on a
realistic automotive application built on the official AUTOSAR
Adaptive Platform Demonstrator (APD).

Index Terms—real-time, automotive, AUTOSAR standard,
Logical Execution Time, modeling.

I. INTRODUCTION

The automotive industry is facing a revolution to support
more complex functionalities needed by autonomous and
assisted driving systems. Consequently, automotive function-
alities are moving from systems based on electronic func-
tionalities made of simple Electronic Control Units (ECUs)
executing ad-hoc operating systems (e.g., OSEK [1]) and
communicating through domain-specific networks (e.g., CAN,
LIN, FlexRay) to POSIX-based operating systems and Ether-
net networks. This paradigm shift also implied a change in
the standards: while classical automotive systems are based
on the AUTOSAR Classic standard [2], the need for new
and more complex functionalities has forced the automotive
industry to create the novel AUTOSAR Adaptive standard [3],
which overtakes the original design.

This new set of specifications has borrowed concepts and
paradigms from the widely used POSIX standard, creating a
service-oriented architecture (SoA) to be run on modern multi-
core heterogeneous platforms. However, unlike the previous
AUTOSAR Classic standard, AUTOSAR Adaptive is lacking
some key support to guarantee non-functional properties (e.g.,
determinism), preventing the system from guaranteeing the
timing constraints of the executed tasks.

This paper illustrates how the well-known System-Level
Logical Execution Time (SL-LET) paradigm [4], already used
in AUTOSAR Classic [5] to achieve deterministic communica-
tion among tasks, can be modeled in the AUTOSAR Adaptive

platform as well. In particular, the paper aims to lay the
foundations for the standardization of SL-LET in the AU-
TOSAR AP specifications. We believe that the introduction of
deterministic communication can help in supporting functional
safety in this new class of systems.

II. BACKGROUND

A. Architecture of AUTOSAR Adaptive

AUTOSAR (AUTomotive Open System ARchitecture) is an
international consortium born in 2004 to create a standard
and interoperable software architecture for automotive ECUs.
The AUTOSAR Classic [2] specification provides a reference
model and programming API for ECUs executing in a real-
time operating system and signal-oriented communications.

Later, the consortium proposed the AUTOSAR Adaptive
standard, which specifies a modern service-oriented architec-
ture (SoA) built on top of POSIX operating systems [6]. The
Adaptive platform is based on different Functional Clusters,
which provide services and functionalities available to devel-
opers through a C++ API, called Runtime Environment for
Adaptive Applications (ARA). Figure 1 shows the architecture
of the Adaptive Platform and the services offered by ARA.
This work primarily focuses on the Communication Manage-
ment cluster, responsible for service-oriented communication,
which leverages the SOME/IP [7] communication protocol,
which is highly recommended by the standard. However, the
work can be easily adapted to the DDS protocol, which is
receiving a growing interest from the automotive industry [8].

The foundation of message-passing communication between
software components (SWCs) is the client-server pattern, in
which servers provide services that clients may request, such
as: (i) Events: let clients know about server-side events; (ii)
Methods: let servers provide remote procedure calls (RPC)
available for clients to use; and (iii) Fields: give clients access
to retrieve or set remote data. Specific ARXML files are used
to describe services’ interfaces at design phase, while service
discovery is used at run-time to bind clients and servers.

B. System Level Logical Execution Time

The Logical Execution Time (LET) paradigm was intro-
duced as part of the GIOTTO framework [9], and it is
commonly used to achieve deterministic communication of

Adaptive SWC

Execution
Management

ara::exec

Communication
Management

ara::com

Time
Synchronization

ara::tsync

Core

ara::core

POSIX PSE51
Operating System

API

State
Management

ara::sm service

Update
Management

ara::ucm service

Non-platform
Service

Non-platform
Service

Application

Adaptive SWC

Application Service Service

User Applications

Adaptive Functional Cluster Adaptive Service Cluster

Diagnostic

ara::diag

Network
Management

ara::nm service

Fig. 1. Architecture of AUTOSAR Adaptive [3].

automotive applications made of periodic tasks [10]. In clas-
sical LET approaches for intra-ECU multi-core platforms, the
jitter of communication, which depends on the scheduling of
tasks, is canceled by forcing input/output operations to occur at
pre-defined time instants — most commonly, at tasks’ periods
boundaries. Furthermore, at each of such instants, all outputs
must occur before any input.

The original LET paradigm assumed a negligible time
for input and output operations [11], [12]. Although this
assumption could be acceptable in the specific case of shared
memory communications, it becomes unrealistic for message-
passing communications, which could require the execution
of context switches (e.g., to enter kernel space), complex
stacks (e.g., TCP/IP), and incur in network delays. For this
reason, more recently, SL-LET [4] has been introduced as
an extension to achieve deterministic execution in distributed
systems as well. The SL-LET introduces the concepts of:
(i) timezones, which represent the scope of a local time for
each ECU, and (ii) interconnect task, whose purpose is to
manage communications between different ECUs, hiding the
unpredictable network delay under its logical execution time.
The difference between two different time zones is bounded
by a synchronization error.

III. MODEL AND DESIGN

We present a possible approach to integrate the SL-LET
paradigm into AUTOSAR Adaptive. Our design principle
aimed at maintaining the original philosophy and architecture
of the standard whilst minimizing the changes to the API
exposed to the system programmer. We first present the SL-
LET protocol that fits with the Adaptive Platform design
in Section III-A, introducing different possible approaches
able to guarantee deterministic execution. Then, we present
an extension to the standard model to integrate the SL-LET
paradigm into AUTOSAR Adaptive Platform (Section III-B).
Finally, we report an example of ARXML configuration file
(Section III-C), including all the required items to enable the
SL-LET usage.

A. SL-LET protocol

The protocol adopted in this work is designed to address
the specific needs of the AUTOSAR Adaptive communication

environment, focusing on providing deterministic communi-
cation for communicating periodic tasks in both intra- and
inter-ECU scenarios.

We consider two types of determinism: (i) time deter-
minism, which guarantees predictable timing for sending and
receiving operations, and (ii) data-flow determinism, which
ensures that a consumer job (i.e., periodic task instance)
always reads the output value from the same producer job,
but does not ensure predictable timing for communication
operations. Data-flow determinism is hence a weaker property
than time determinism. We always consider partitioned fixed-
priority scheduling, typically used in automotive, in which
tasks cannot migrate and are statically assigned to cores.

The proposed model includes three variants: High-Priority
(HP), Timestamp (TM) and Mixed (TM-HP). The HP variant
leverages high-priority tasks to manage intra- and inter-ECU
communication operations, ensuring both time and data-flow
determinism by enforcing communication operations in cor-
respondence of the task periods, inspired by approaches for
(non-SL) LET for multi-core platforms [10]. Communication
is managed using shared memory variables handled by tasks,
one for each core, running at the highest priority, which
are not subject to scheduling delays because they cannot be
preempted. These tasks can be modeled as Generalized Multi-
frame Tasks [10], [13] since they are activated in correspon-
dence with the period of communicating tasks, as mandated
by LET to ensure time-deterministic communication. Differ-
ently, the TM variant employs timestamps embedded into the
message structure to enforce data-flow determinism, reducing
the overhead caused by high-priority tasks but sacrificing
strict time determinism. The timestamp field contains the time
from which the message becomes valid for the producer,
computed as the release time of the producer job, adding
the task period and the communication/synchronization delay.
Input and output communications are directly managed by
application tasks at task periods, resulting in network opera-
tions being executed with the same priority as the application
tasks. With TM, all the communications are managed via
network using the SOME/IP protocol, maintaining a paradigm
as close as possible to the current Adaptive Platform standard.
However, the network stack gets involved every time a send
or receive operation is performed, even in the case of intra-
ECU communication, resulting in additional overhead. For this
reason, the variant TM-HP has been designed to leverage
both features of HP and TM variants. Network-based inter-
ECU send and receive operations are handled directly from
the application tasks, as in the TM variant. However, intra-
ECU communications are managed by high-priority tasks with
the aid of shared memory, removing the need to involve the
network stack and enforcing time-determinism.

B. Modeling the extensions

To integrate SL-LET into the Adaptive standard, several key
challenges have to be addressed:

CH1 Design a mechanism to perform input/output operations
synchronized with the tasks’ periods.

2

CH2 Abstract the SL-LET logic from the application level,
allowing to maintain the same programming paradigm
(i.e., keep the same signature for most of the APIs).

Figure 2 depicts the UML class diagram of the proposed
extensions to the AUTOSAR Adaptive standard, enhancing
the model with new classes embedding the SL-LET logic. The
extension focuses mainly on the Event objects, as the approach
can be replicated easily also for Methods and Fields.

AUTOSAR Standard Although most of the software running
on automotive ECUs is designed in a time-driven fashion
(i.e., based on periodic tasks), AUTOSAR Adaptive’s service-
oriented communication triggers tasks following a message-
driven activation pattern. However, the standard also supports
periodic execution of tasks as documented in the Timing
Extension Specifications [14]. We therefore needed to properly
”connect” these two parts of the standard to allow periodic
communication.

In Figure 2, blue classes represent already existing classes
that support periodic activations of tasks, which are essential
to integrate the SL-LET logic. In particular, it is possible to
specify the period, or inter-arrival time, of time events, which
can activate specific software components. Note that despite
some classes already referring to the SL-LET paradigm, they
refer only to the periodic behavior, as the SL-LET logic is still
missing in the standard.

Model Extension The core of the proposed model extension
is based on three main classes whose purpose is to add support
for the SL-LET paradigm at the application programming
level. To represent tasks that follow the SL-LET paradigm, the
novel SLLETExecutable class has been introduced. The
TDEventSLLET class, which represents the timed event of
the SL-LET software component, defines the task routine’s
periodicity. In compliance with the SL-LET protocol outlined
in III-A, the SLLETExecutable class has been designed to
provide complete flexibility in selecting the implementation
strategy. The behavior of the APIs exposed by the class is
strictly dependent on the specific implementation. With the HP
variant, the SLLETExecutable class is designed to imple-
ment the high-priority tasks that handle the communication op-
erations on behalf of the application tasks. The Register()
and Deregister() APIs are used by application tasks to
register and deregister themselves to the SL-LET paradigm,
respectively. Note that the registration phase is mandatory to
instruct the high-priority task of the presence of a new task
for which to perform communication operations. For the TM-
HP variant, the behavior of the class is the same as explained
in the previous case, with the only difference it only affects
intra-ECU communication. Finally, with the TM variant, this
class refers to an adaptive executable, ignoring the behavior
of the public APIs Register and Deregister.

To ensure GIOTTO’s semantics with the high-priority
task strategy in the intra-ECU communication phases, the
SLLETSynch class has been created. This semantics specif-
ically mandates that all output operations must be completed
before moving on to the input ones when several tasks call

for communication activities to be completed simultaneously.
To maintain causality in a task chain, GIOTTO semantics
is required. The SLLETSynch class lists all the tasks that
synchronize during the data input/output phase, as shown in
the model in Figure 2.

Figure 3 shows the behavior of the SLLETSynch class
with three high-priority tasks performing LET operations on
different cores. Each task must register to the write/read phase
using the functions call RTW and RTR as shown in Figure 3,
which correspond to the APIs of the SLLETSynch class
RegisterToWrite and RegisterToRead, respectively.
A spin-wait phase is undertaken to actively wait for all the
other high-priority tasks (scheduled in other cores) to terminate
the write phase and register to the read phase. Note that
registering a task for the read phase implies deregistering
it from the write phase. A synchronization barrier, which
high-priority activities may subscribe to through the APIs
depicted in Figure 2, can be used to construct such a class
at the implementation level. SLLETSynch has been de-
signed as a singleton-type class, allowing only one instance
of the class to manage the synchronization of high-priority
tasks running across the platform’s various cores. This class
is not used under the TM variant, as any type of com-
munication, including intra-ECU, is managed via network.
Lastly, in order to properly manage the SL-LET logic, the
SLLETTimingManager class was designed to expose the
temporal activations of the SL-LET SWCs to the classes
associated with communication events. Specifically, SWC
SL-LETs can use the SetActivationTime() API to
record their activation time at each execution iteration. The
GetActivationTime() API, on the other hand, can be
used to appropriately handle communication events and make
them run at the start of the task’s actual activation.

Auto-generated Classes Similarly to AUTOSAR Classic,
the Adaptive standard also heavily relies on automatic code
generation. To tackle the challenges CH1 and CH2, the full
SL-LET logic has been confined within the specified classes.
The proposed extension provides additional auto-generated
classes for both sending and receiving events, directly de-
rived from the event classes already existing in the standard
(EventDispatcher and Event). This approach, in fact,
allows us to minimize the impact on the current specifications,
requiring less effort for the integration, and it is hopefully
beneficial towards standardization efforts we want to pursue
in future work. The SL-LET model is the same regardless of
the specific implementation chosen.

C. Configuration files

Although all the auto-generated classes shown in Figure 2
are independent of the configuration of the system and agnostic
of the possible protocol’s approaches, it is still required to
specify the periodicity of the process and to designate all the
events that are managed under the SL-LET logic. Configura-
tion can be done by modifying ARXML files already existent
in the Adaptive Platform standard.

3

LetEventDispatcher
<T::Object>

- cached_value: T[0,*]

- interconnect_delay: int

+ Send()

LetEvent
<T::Object>

- cached_value: T[0,*]

- interconnect_delay: int

+ GetNewSamples()

EventDispatcher
<T::Object>

+ Send()

Event
<T::Object>

+ GetNewSamples()

PeriodicEventTriggering MultidimensionalTime

- CseCode: CseCodeType
- CseCodeFactor: int

+ jitter 0..1

+ period 0..1

+ MinIntTime 0..1

+ event 0..1

SendEvents[0,*]

RecvEvents[0,*]

SynchRef[0,1]

SLLETTimingManager

- timespec activation_times

+ SetActivationTime()

+ GetActivationTime()

TimingConstraintTimeDescriptionEvent

TDEventSLLET

TimingClock

SLLETExecutable

- std::thread Func

- Trigger()

+ Register()

+ Deregister()

SLLETSynch

- SLLETExecutable tasks[]

+ RegisterToWrite()

+ RegisterToRead()

1...*

Fig. 2. Proposed extensions to AUTOSAR Adaptive. Classes in blue are already present in the Adaptive standard. Classes in yellow are added to the proposed
extension. Classes in gray are autogenerated.

RTW()

RTW()

RTW() RTR()

RTR()

RTR()

T1
L

T2
L

T3
L

Other computations

Write operations Read operations

Spin wait

Fig. 3. GIOTTO semantic behavior enforced by SLLETSynch class. The
RWD and RTR calls refer to RegisterToWrite and RegisterToRead
APIs respectively.

TABLE I
SL-LET COMMUNICATION SERVICES DECLARATION.

<PROVIDED-SOMEIP-EVENT-GROUP>
<SHORT-NAME>ProvEvents</SHORT-NAME>
<EVENT-GROUP-REF>apd/.../Grp1</EVENT-GROUP-REF>
<SL-LET>true</SL-LET>

</PROVIDED-SOMEIP-EVENT-GROUP>
...

<REQUIRED-SOMEIP-EVENT-GROUP>
<SHORT-NAME>ReqEvents</SHORT-NAME>
<EVENT-GROUP-REF>apd/.../Grp2</EVENT-GROUP-REF>
<SL-LET>true</SL-LET>

</REQUIRED-SOMEIP-EVENT-GROUP>

Table I shows a part of the Service Instance
Manifest ARXML file that is used to configure all
the communication services exploited by a process.

The PROVIDED-SOMEIP-EVENT-GROUP and
REQUIRED-SOMEIP-EVENT-GROUP sections of the
configuration file refer to all the provided and required group
of events of the software component that will be used by the
process. For each of these sections, it is required to specify the
name of the group of events, along with its reference created
in a separate interface ARXML configuration file and the
flag to specify whether the group of events must be managed
with the SL-LET logic. If the SL-LET flag is disabled, all
the events belonging to the group will be handled according
to the Adaptive Platform standard. As shown in Table I, for
the provided events group ProvEvents, an instance of the
LetEventDispatcher class shown in Figure 2 (which
embeds the SL-LET logic) is created for each event of the
group. This instance will be referred to by the software
component every time a new message needs to be published.
Similarly, for the required event ReqEvents, an instance
of the LetEvent class is created and will be referred to
by the software component every time a new message must
be received The instances of the LetEventDispatcher
and LetEvent classes, which are part of the proposed
model extension, are auto-generated and linked to the process
referred by the ARXML file when building the system.

Table II shows a part of the Process Design
ARXML file that is used to configure the process. The
TD-EVENT-SLLET section has been added to specify the
Time Description Event used to determine the periodicity of a
SL-LET executable, as highlighted in Figure 2. It contains the
name of the event and the reference to the adaptive executable,
which will adhere to the SL-LET paradigm, according to Sec-
tion III-B. The section PERIODIC-EVENT-TRIGGERING
specifies the parameters required to trigger a designated event
periodically. According to the Generic Structure Documen-

4

TABLE II
SL-LET PROCESSES CONFIGURATION.

<TD-EVENT-SLLET>
<SHORT-NAME>Activation</SHORT-NAME>
<EXECUTABLE-REF>apd/.../Process1</EXECUTABLE-REF>

</TD-EVENT-SLLET>
...

<PERIODIC-EVENT-TRIGGERING>
<SHORT-NAME>ReqEvents</SHORT-NAME>
<EVENT-REF>apd/.../Activation</EVENT-REF>
<PERIOD>

<CSE-CODE>3</CSE-CODE>
<CSE-CODE-FACTOR>100</CSE-CODE-FACTOR>

</PERIOD>
</PERIODIC-EVENT-TRIGGERING>

tation [15], the CSE-CODE parameter is used to specify
the granularity of the period, while the CSE-CODE-FACTOR
is the integer representing the period itself. In the example
shown in Table II, during the building phase a trigger with
a period of 100ms is created and linked to an instance of
the TDEventSLLET class, with an identification name of
Activation, and referring to the Process1 adaptive executable.
As discussed in Section III-A, the high-priority tasks used in
the HP and TM-HP variants do not rely on a specific period,
but on the arrival times of communicating tasks. In this case,
the high-priority task shares the periodic triggers related to
the processes it manages, as it is possible to refer to different
SLLETExecutable instances with a single TDEventSLLET.

IV. AUTO-GENERATED CLASSES IMPLEMENTATION

This section briefly explains the implementation of the SL-
LET logic embedded in the auto-generated classes shown
in Figure 2. It is important to remark that the automatic
code generation process is not being affected by the ARXML
configuration file explained in Section III-C as the SL-LET
logic embedded in the event objects is agnostic of the imple-
mentation strategy chosen.

LetEventDispatcher This class has been derived from the
class EventDispatcher provided by the AP standard
and extended to implement the output operations compli-
ant with the SL-LET semantics (i.e., send events). The
cached_value attribute is used to store the latest message
requested to be sent. Every time a publisher requests to
send a new message, the attribute value is overwritten. The
interconnect_task_delay attribute refers to the syn-
chronization delay between the local timezone and the master
timezone, from which is derived the global time. The value of
the attribute is considered meaningful only in the context of
local timezones. Otherwise, if the send operation is performed
in the context of the master timezone, the attribute will be
ignored as the synchronization delay is zero. The function
Send() has been extended to fill the message timestamp
according to the SL-LET semantics. The timestamp value
is computed starting from the activation time of the task’s
job that is calling the send operation, which is stored by the
SLLETTimingManager class, as discussed in Section III-B.

Platform 1 Platform 2

VideoProvider VideoAdapter PreProcessing ComputerVision EBA

Image Image

Lane

Image Vehicles

Fig. 4. Architecture of the Brake Assistant in APD.

Finally, the interconnect_task_delay value is added
to the activation time retrieved before.

LetEvent This class has been derived from the class Event
provided by the AP standard, and extended to implement the
input operations (i.e., receiving operations) compliant with the
SL-LET semantics. Similarly to the LetEventDispatcher
class, the interconnect_task_delay attribute stores
the timezone’s synchronization delay. The cached_value
list stores all the messages received from the network that
are related to the event. The list is ordered based on the
timestamp of the message received, adjusted with the local
synchronization delay. The GetNewSamples() function has
been extended to return the latest message received from the
network whose validity time has expired and hence can be
processed by the subscriber. All the messages with validity
time not yet expired are stored in the cached_value list.
The validity of the message is evaluated by comparing the
message timestamp (adjusted with the local synchronization
delay) with the activation time of the task instance that is
requesting to receive new messages. Similar to the case of the
send operation, the activation time is retrieved with the aid of
the SLLETTimingManager class. If the adjusted message
timestamp is antecedent to the activation time, then the validity
is considered expired and the message can be delivered to the
subscriber. Otherwise, the validity is considered not yet ex-
pired and the message must be stored in the cached_value
list. Every time the GetNewSamples() function is invoked,
first the cached_value list is inspected to find messages
with validity time expired. If any, the most updated message is
selected as the one to be processed by the subscriber, while the
others are discarded. Then, the new messages received from
the network are processed and stored in the queue of the Proxy
class, if any. The function must return only the most updated
messages between the one selected from the cached_value
list and the latest message valid received from the network.

V. EVALUATION

The evaluation consists of an experimental setup based on
a realistic automotive application, the Brake Assistant, made
available by the AUTOSAR Consortium through the official
Adaptive Platform Demonstrator (APD). As shown in [16],
this Brake Assistant is a particularly interesting case since it
highlights the lack of determinism in Adaptive and how a
safety-critical application could be negatively impacted.

As shown in Figure 4, the Brake Assistant application is
composed of five tasks distributed in two different platforms.
The VideoProvider task is responsible for sending on the
network the frames taken from the camera, with a period

5

ComputerVision Eba PreProcessing VideoAdapter VideoProvider
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Ra

ti
o

(I
np

ut
 Ji

tt
er

 /
Pe

ri
od

)
Input Jitter Comparison

HP
TM-HP
TM
NO-SL-LET

Fig. 5. Input jitter for different implementation approaches.

of 50ms. The VideoAdapter task periodically checks for new
messages from the network containing frames sent from the
VideoProvider task, with a rate of 25ms. The PreProcessing
task receives the image from the VideoAdapter, recognizes
the lane, and sends its bounding box, along with the full
image, to the ComputerVision task, which will send the list
of any detected vehicles in the lane to the Emergency Brake
Assistant (EBA) task. Both PreProcessing and ComputerVision
tasks have a period of 50ms, while the EBA task has a period
of 25ms. For the evaluation, the Brake Assistant application
has been split among two Raspberry Pi4 platforms powered by
a quad-core 64-bit ARM SoC and running the Linux operating
system. The communication is based on the SOME/IP proto-
col. Each task of the Brake Assistant application is designed as
an AUTOSAR Adaptive software component, implemented as
a Linux process, and scheduled by the fixed-priority scheduler
of Linux (SCHED FIFO). Each task of the Brake Assistant
application executes a certain number of jobs in such a way
that the total amount of messages exchanged by the whole
chain of tasks is 10.000.

The purpose of the evaluation is to measure the average
input and output jitters to check whether the three SL-LET
variants have the expected behavior in terms of determinism.
To this end, we define the output jitter of the k-th job of
the i-th task τi as Jo

k = |t(k+1) − ts,k|, where t(k+1) is the
activation time of the (k+1)-th job of the producer task and
ts,k is the time in which the actual send operation is performed
by the k-th job. The input jitter, instead, is J i

k = |tr − ta|
where tr is defined as the time after which the message can
be read by the job k-th of the consumer to preserve the
data-flow determinism, while ta is the time the message is
available to the consumer to be read. Figures 5 and 6 show
the measured input jitter and the output jitters, respectively,
comparing the variants described in Section III-A with the
configuration without the SL-LET logic. These comparisons
are made using the ratio input and output jitter, obtained
by dividing the average jitter from all the jobs of each
task with its period. The evaluation shows that HP removes
both input and output jitter as proof that it guarantees time
determinism. TM-HP and TM, instead, remove only the input
jitter while still exhibiting output jitter because they can only
guarantee data-flow determinism. With TM-HP, the output
jitter is present only for the VideoProvider task, as it is the

ComputerVision Eba PreProcessing VideoAdapter VideoProvider
0.0

0.2

0.4

0.6

0.8

1.0

Ra
ti

o
(O

ut
pu

t
Jit

te
r

/ P
er

io
d)

Output Jitter Comparison
HP
TM-HP
TM
NO-SL-LET

Fig. 6. Output jitter for different implementation approaches.

only one performing output operations by sending messages
on the network (the others perform output using high-priority
tasks). Fig. 5 also shows that the VideoProvider task has no
input jitter with all the variants, as it is the head of the chain
and, hence, its input is immediately available for all its jobs.

VI. RELATED WORK

Concerning the deterministic execution on POSIX OSs,
the Linux community has designed and implemented the
SCHED DEADLINE scheduler [17], where tasks can be
assigned a period and a runtime budget. To enforce periodic
execution, the task can invoke the sched_yield() syscall
to inform the scheduler of the end of the current instance;
the scheduler will then wake up the task at the start of
the next period. SCHED DEADLINE is Linux-specific and,
therefore, not available on other POSIX OSs. Moreover, the
actual execution of the (input/output) tasks still depends on
other high-priority SCHED DEADLINE tasks in the system
and can exhibit jitter. Several works considered protocols
for LET in single-ECU platforms [10]–[12], [18]. Closer is
the work in [19], which implemented LET on POSIX OSs
but without considering AUTOSAR Adaptive. It relied on a
bridge component (external to Adaptive) to artificially delay
input/output operations. Differently, this paper shows how
Adaptive can be extended to include native support SL-LET.

VII. CONCLUSIONS

This paper presented a model extension of the AUTOSAR
Adaptive standard to integrate the SL-LET paradigm, which
aims to lay the foundation for future standardization. An
evaluation of the input and output jitter on a realistic automo-
tive application showed that the model is general enough to
accommodate different implementation strategies, which can
guarantee different levels of determinism. Future work will
investigate the standardization of SL-LET according to the
approach proposed in this paper and evaluate the overheads of
different implementation options.

REFERENCES

[1] OSEK, “OSEK/VDX Operating System Specification 2.2.3,”
https://www.osek-vdx.org/index htm.html, Standard, Feb. 2005.

[2] AUTOSAR, “The AUTOSAR Classic Platform,”
https://www.autosar.org/standards/classic-platform.

6

[3] ——, “Explanation of Adaptive Platform De-
sign,” https://www.autosar.org/fileadmin/standards/R22-
11/AP/AUTOSAR EXP PlatformDesign.pdf.

[4] K.-B. Gemlau, L. Köhler, R. Ernst, and S. Quinton, “System-level logical
execution time: Augmenting the logical execution time paradigm for
distributed real-time automotive software,” ACM Transactions on Cyber-
Physical Systems, vol. 5, no. 2, pp. 1–27, 2021.

[5] AUTOSAR, “Specification of Timing Extensions for Classic
Platform,” https://www.autosar.org/fileadmin/standards/R23-
11/CP/AUTOSAR CP TPS TimingExtensions.pdf.

[6] “IEEE Standard for Information Technology—Standardized Application
Environment Profile (AEP)—POSIX® Realtime and Embedded Appli-
cation Support, Std 1003.13,” 2003.

[7] AUTOSAR Consortium et al., “SOME/IP Service Discovery Protocol
Specification, Tech. Rep. 802,” Tech. Rep., 2021.

[8] C. Scordino, A. G. Mariño, and F. Fons, “Hardware acceleration of
data distribution service (DDS) for automotive communication and
computing,” IEEE Access, vol. 10, pp. 109 626–109 651, 2022.

[9] T. A. Henzinger, C. M. Kirsch, M. A. Sanvido, and W. Pree, “From
control models to real-time code using Giotto,” IEEE Control Systems
Magazine, vol. 23, no. 1, pp. 50–64, 2003.

[10] A. Biondi and M. Di Natale, “Achieving predictable multicore execution
of automotive applications using the let paradigm,” in 2018 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS).
IEEE, 2018, pp. 240–250.

[11] C. M. Kirsch and A. Sokolova, “The logical execution time paradigm,”
Advances in Real-Time Systems, pp. 103–120, 2012.

[12] M. Beckert, M. Möstl, and R. Ernst, “Zero-time communication for
automotive multi-core systems under spp scheduling,” in IEEE 21st
International Conference on Emerging Technologies and Factory Au-
tomation (ETFA), 2016, pp. 1–9.

[13] S. Baruah, D. Chen, S. Gorinsky, and A. Mok, “Generalized multiframe
tasks,” Real-Time Systems, vol. 17, pp. 5–22, 1999.

[14] AUTOSAR, “Requirements on Timing Exten-
sions,” https://www.autosar.org/fileadmin/standards/R23-
11/FO/AUTOSAR RS TimingExtensions.pdf.

[15] ——, “Generic Structure Template,”
https://www.autosar.org/fileadmin/standards/R22-11/FO/AUTOSAR
TPS GenericStructureTemplate.pdf.

[16] C. Menard, A. Goens, M. Lohstroh, and J. Castrillon, “Achieving
determinism in adaptive AUTOSAR,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2020, pp. 822–827.

[17] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline scheduling
in the linux kernel,” Software: Practice and Experience, vol. 46, no. 6,
pp. 821–839, 2016.

[18] P. Pazzaglia, D. Casini, A. Biondi, and M. D. Natale, “Optimizing inter-
core communications under the let paradigm using dma engines,” IEEE
Transactions on Computers, vol. 72, no. 1, pp. 127–139, 2023.

[19] D. Bellassai, A. Biondi, A. Biasci, and B. Morelli, “Supporting logical
execution time in multi-core posix systems,” Journal of Systems Archi-
tecture, vol. 144, p. 102987, 2023.

7

